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[1] The properties of mesoscale Lagrangian turbulence in the Adriatic Sea are studied
from a drifter data set spanning 1990–1999, focusing on the role of inhomogeneity and
nonstationarity. A preliminary study is performed on the dependence of the turbulent
velocity statistics on bin averaging, and a preferential bin scale of 0.25� is chosen.
Comparison with independent estimates obtained using an optimized spline technique
confirms this choice. Three main regions are identified where the velocity statistics are
approximately homogeneous: the two boundary currents, West (East) Adriatic Current,
WAC (EAC), and the southern central gyre, CG. The CG region is found to be
characterized by symmetric probability density function of velocity, approximately
exponential autocorrelations, and well-defined integral quantities such as diffusivity and
timescale. The boundary regions, instead, are significantly asymmetric, with skewness
indicating preferential events in the direction of the mean flow. The autocorrelation in the
along mean flow direction is characterized by two timescales, with a secondary
exponential with slow decay time of �11–12 days particularly evident in the EAC region.
Seasonal partitioning of the data shows that this secondary scale is especially prominent in
the summer-fall season. Possible sampling issues as well as physical explanations for
the secondary scale are discussed. Physical mechanisms include low-frequency
fluctuations of forcings and mean flow curvature inducing fluctuations in the particle
trajectories. Consequences of the results for transport modeling in the Adriatic Sea are
discussed. INDEX TERMS: 4568 Oceanography: Physical: Turbulence, diffusion, and mixing processes;

4594 Oceanography: Physical: Instruments and techniques; 4520 Oceanography: Physical: Eddies and
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1. Introduction

[2] The Adriatic Sea is a semi-enclosed sub-basin of the
Mediterranean Sea (Figure 1a). It is located in a central geo-
political area, and it plays an important role in the maritime
commerce. Its circulation has been studied starting from the
first half of the nineteenth century [Poulain and Cushman-
Roisin, 2001], so that its qualitative characteristics have
been known for a long time. A more quantitative knowl-
edge of the oceanography of the Adriatic Sea, on the other
hand, is much more recent, and due to the systematic
studies of the last decades using both Eulerian and La-

grangian instruments [Poulain and Cushman-Roisin, 2001].
In particular, a significant contribution to the knowledge of
the surface circulation has been provided by a drifter data
set spanning 1990–1999, recently analyzed by Poulain
[2001]. These data provide a significant spatial and tempo-
ral coverage, allowing determination of the properties of the
circulation and of its variability.
[3] In the work of Poulain [2001], the surface drifter data

set 1990–1999 has been analyzed to study the general
circulation and its seasonal variability. The results con-
firmed the global cyclonic circulation in the Adriatic Sea
seen in earlier studies [Artegiani et al., 1997], with closed
recirculation cells in the central and southern regions.
Spatial inhomogeneity is found to be significant not only
in the mean flow but also in the Eddy Kinetic Energy (EKE)
pattern, reaching the highest values along the coast in the
southern and central areas, in correspondence to the strong
boundary currents. The analysis also highlights the presence
of a marked seasonal signal, with the coastal currents being
more developed in summer and fall, and the southern
recirculating cell being more pronounced in winter.
[4] In addition to the information on Eulerian quantities

such as mean flow and EKE, drifter data provide also direct
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information on Lagrangian properties such as eddy diffu-
sivity K and Lagrangian timescales T, characterizing the
turbulent transport of passive tracers in the basin. The
knowledge of transport and dispersion processes of passive
tracers is of primary importance in order to correctly
manage the maritime activities and the coastal development
of the area, especially considering that the Adriatic is a
highly populated basin, with many different antropic activ-
ities such as agriculture, tourism, industry, fishing, and
military navigation.
[5] In the work of Poulain [2001], estimates of K and T

have been computed providing values of K � 2 �
107 cm2 s�1 and T � 2 days, averaged over the whole
basin and over all seasons. Similar results have been
obtained in a previous paper [Falco et al., 2000], using a
restricted data set spanning 1994–1996. In the work of
Falco et al. [2000], the estimated values have also been
used as input parameters for a simple stochastic transport
model, and the results have been compared with data,
considering patterns of turbulent transport and dispersion
from isolated sources. The comparison by Falco et al.
[2000] is overall satisfactory, even though some differences
between data and model persist, especially concerning first
arrival times of tracer particles at given locations. These
differences might be due to various reasons. One possibility
is that the use of global parameters in the model is not
appropriate, since it does not take into account the statistical
inhomogeneity and nonstationarity of the parameter values.
Alternatively, the differences might be due to some inherent
properties of turbulent processes, such as non-Gaussianity
or presence of multiple scales in the turbulent field, which
are not accounted for in the simple stochastic model used by
Falco et al. [2000]. These aspects are still unclear and will
be addressed in the present study.

[6] In this paper, we consider the complete data set for the
period 1990–1999 as considered by Poulain [2001], and we
analyze the Lagrangian turbulent component of the flow,
with the goal of (1) identifying the main statistical proper-
ties and (2) determining the role of inhomogeneity and
nonstationarity. The results will provide indications on
suitable transport models for the area.
[7] Inhomogeneity and nonstationarity for standard

Eulerian quantities such as mean flow and EKE have
been fully explored by Poulain [2001], while only
preliminary results have been given for the Lagrangian
statistics. Furthermore, the inhomogeneity of probability
density function (pdf) shapes (form factors like skewness
and kurtosis) have not been analyzed yet. In this paper,
the spatial dependence of Lagrangian statistics is studied
first, dividing the Adriatic Sea into approximately homo-
geneous regions. An attempt is then made to consider the
effects on non-stationarity, grouping the data in seasons,
similarly to what was done by Poulain [2001] for the
Eulerian statistics.
[8] The paper is organized as follows. A brief overview

of the Adriatic Sea and of previous results on its turbulent
properties are provided in section 2. In section 3, informa-
tion on the drifter data set and on the methodology used to
compute the turbulent statistics are given. The results of the
analysis are presented in section 4, while a summary and a
discussion of the results are provided in section 5.

2. Background

2.1. Adriatic Sea

[9] The Adriatic Sea is the northernmost semi-enclosed
basin of the Mediterranean connected to the Ionian Sea at its
southern end through the Strait of Otranto (Figure 1). The

Figure 1. Adriatic Sea. (a) Topography and drifter deployment locations. (b) Mean flow circulation
(adapted from Poulain [ 2001] with permission from Elsevier).
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Adriatic basin, which is elongated and somewhat rectan-
gular (800 km by 200 km), can be divided into three
distinct regions generally known as the northern, middle,
and southern Adriatic [Cushman-Roisin et al., 2001]. The
northern Adriatic lies on the continental shelf, which
slopes gently southward to a depth of about 100 m. The
middle Adriatic begins where the bottom abruptly drops
from 100 m to over 250 m to form the Mid-Adriatic Pit
(also called Jabuka Pit) and ends at the Palagruza Sill,
where the bottom rises again to approximately 150 m.
Finally, the southern Adriatic, extending from Palagruza
Sill to the Strait of Otranto (780 m deep) is characterized
by an abyssal basin called the South Adriatic Pit, with a
maximum depth exceeding 1200 m. The western coast
describes gentle curves, whereas the eastern coast is
characterized by numerous channels and islands of com-
plex topography (Figure 1a).
[10] The winds and freshwater runoff are important forc-

ings of the Adriatic Sea. The energetic northeasterly bora
and the southeasterly sirocco winds are episodic events that
disrupt the weaker but longer-lasting winds, which exist the
rest of the time [Poulain and Raicich, 2001]; the Po River in
the northern basin provides the largest single contribution to
the freshwater runoff, but there are other rivers and land
runoff with significant discharges [Raicich, 1996]. Besides
seasonal variations, these forcings are characterized by
intense variability on timescales ranging between a day
and a week.
[11] The Adriatic Sea mean surface flow is globally

cyclonic (Figure 1b) due to its mixed positive-negative
estuarine circulation forced by buoyancy input from the
rivers (mainly the Po River) and by strong air-sea fluxes
resulting in loss of buoyancy and dense water formation.
The Eastern Adriatic Current (EAC) flows along the
eastern side from the eastern Strait of Otranto to as far
north as the Istrian Peninsula. A return flow (the WAC) is
seen flowing to the southeast along the western coast
[Poulain, 1999a, 1999b, 2001]. Recirculation cells embed-
ded in the global cyclonic pattern are found in the lower
northern, the middle, and the southern sub-basins, the latter
two being controlled by the topography of the Mid and
South Adriatic Pits, respectively. These main circulation
patterns are constantly perturbed by higher-frequency cur-
rents variations at inertial/tidal and meso (e.g., 10-day
timescale [Cerovecki et al., 1991]) scales. In particular,
the wind stress is an important driving mechanism, causing
transients currents that can be an order of magnitude larger
than the mean circulation. The corresponding length scale
is 10–20 km, i.e., several times the baroclinic radius of
deformation, which in the Adriatic can be as short as 5 km
[Cushman-Roisin et al., 2001].

2.2. Turbulent Transport in the Adriatic Sea and
Previous Drifter Studies

[12] Drifter data are especially suited for transport studies
since they move in good approximation following the
motion of water parcels [Niiler et al., 1995]. As such, drifter
data have often been used in the literature to compute
parameters to be used in turbulent transport and dispersion
models [Davis, 1991, 1994]. In the Adriatic Sea, as men-
tioned in section 1, turbulent parameters have been previ-
ously computed by Falco et al. [2000] and Poulain [2001]

as global averages over the basin. A brief overview is given
in the following.
2.2.1. Models of Turbulent Transport and Parameter
Definitions
[13] The transport of passive tracers in the marine envi-

ronment is usually regarded as due to advection of the
‘‘mean’’ flow, i.e., of the large-scale component of the flow
u(x, t), and to dispersion caused by the ‘‘turbulent’’ flow,
i.e., of the mesoscale and smaller scale flow. The simplest
possible model used to describe these processes is the
advection-diffusion equation,

@C=@t þr � UCð Þ ¼ r � KrCð Þ; ð1Þ

where C is the average concentration of a passive tracer, U
is the mean flow field, and K is the diffusivity tensor
defined as

Kij ¼
Z 1

o

Rij tð Þdt; ð2Þ

where R(t) is the Lagrangian autocovariance,

Rij tð Þ ¼ hu0i tð Þu0j t þ tð Þi; ð3Þ

with h�i being the ensemble average and u0 = u � U being
the turbulent Lagrangian velocity, i.e., the residual velocity
following a particle. Note that in this definition, R depends
only on the time lag t, consistently with a homogeneous
and steady situation. In fact, nonhomogeneous and unsteady
flows do not allow for a consistent definition of the above
quantities.
[14] The advection-diffusion equation (1) can be correctly

applied only in the presence of a clear scale separation
between the scale of diffusion mechanism and the scale of
variation of the quantity being transported [Corrsin, 1974].
Generalizations of equation (1) are possible, for example
introducing a ‘‘history term’’ in equation (1) that takes into
account the interactions between U and u0 [e.g., Davis,
1987]. Alternatively, a different class of models can be used
that are easily generalizable and are based on stochastic
ordinary differential equation describing the motion of
single tracer particles [e.g., Griffa, 1996; Berloff and
McWilliams, 2002].
[15] A general formulation was given by Thomson [1987]

and further widely used. The stochastic equations describing
the particle state z are

dzi ¼ aidt þ bijdWj; ð4Þ

where dW is a random increment from a normal distribution
with zero mean and second-order moment hdWi(t)dWj(s)i =
dijd(t � s)dt.
[16] Equation (1) can be seen as equivalent to the simplest

of these stochastic models, i.e., the pure random walk
model, where the particle state is described by the positions,
i.e., z � x only, which are assumed to be Markovian, while
the velocity u0 is a random process with no memory (zero-
order model). A more general model can be obtained
considering the particle state defined by its position and
velocity. Thus z � (x, u0) are joint Markovian, so that the
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turbulent velocity u0 has a finite memory scale, T (first-order
model). In this case the model can also be applied for times
shorter than the characteristic memory time T, in contrast to
the zeroth-order model. If times for which the acceleration is
significantly correlated are important, second-order models
should be used [Sawford, 1999]. Higher-order models are
possible [see, e.g., Berloff and McWilliams, 2002], but they
require some knowledge on the supposed universal behavior
of very elusive quantities such as time derivatives of tracer
acceleration.
[17] For a homogeneous and stationary flow with inde-

pendent velocity components, the first-order model can be
written for the fluctuating part u0 for each component and
corresponds to the linear Langevin equation (i.e., the
Ornstein-Uhlenbeck process [see, e.g., Risken, 1989]),

dxi ¼ Ui þ u0i
� �

dt ð5Þ

du0i ¼ � u0i
Ti
dt þ

ffiffiffiffiffiffiffi
2s2i
Ti

s
dWI ; ð6Þ

where si
2 and Ti are the variance and the correlation

timescale of u0i, respectively.
[18] For the model (equations (5)–(6)), u0i is Gaussian

and

Rii tð Þ ¼ s2i exp � t
Ti

� �
; ð7Þ

so that Ti

Ti ¼
1

s2i

Z 1

o

Rii tð Þ ¼ Kii

s2i
ð8Þ

corresponds to the e-folding timescale, or memory scale of
u0i.
[19] Description of more complex situations such as

unsteadiness and inhomogeneity, as well as non-Gaussian
Eulerian velocity field, need the more general formulation
of Thomson [1987]. An accurate understanding of these
situations is thus necessary in order to properly choose the
model to be applied to describe transport processes to the
required level of accuracy.
2.2.2. Results From Previous Studies in the
Adriatic Sea
[20] In the work of Falco et al. [2000], the model

(equations (5)–(6)) has been applied using the drifter data
set 1994–1996. The pdf for the meridional and zonal
components of u0 have been computed for the whole data
set and found to be qualitatively close to Gaussian for small
and intermediate values, while differences appear in the
tails.
[21] For each velocity component, the autocovariance

(equation (3)) has been computed and the parameters Ti
and si

2 have been estimated: si
2 � 100 cm2/s2, Ti � 2 days.

These values have been used also in Lagrangian prediction
studies [Castellari et al., 2001] with good results. Rii(t)
computed by Falco et al. [2000] appears to be qualitatively
similar to the exponential shape (equation (7)), at least for
small t, whereas it appears to be different from exponential

for time lags t > Ti, since the autocovariance tail maintains
significantly different from zero.
[22] In the work of Poulain [2001], estimates of Rii(t), Ti,

and Kii have been computed using the more extensive data
set 1990–1999. A different method than that of Falco et al.
[2000] has been used for the analysis [Davis, 1991], but the
obtained results are qualitatively similar to those of Falco et
al. [2000]. Also, in this case, the autocovariance Rii(t) does
not converge to zero, resulting in a Kii which does not
asymptote to a constant.
[23] There might be various reasons for the observed

tails in the autocovariances and in the pdfs. First of all,
they might be an effect of poorly resolved shears in the
mean flow U. This aspect has been partially investigated
by Falco et al. [2000] and Poulain [2001] using various
techniques to compute U(x). Another possible explanation
is related to unresolved inhomogeneity and nonstationar-
ity in the turbulent flow. Since the estimates of the pdf
and autocovariances are global, over the whole basin and
over the whole time period, they might be putting
together different properties from different regions in
space and time, resulting in tails. Finally, the tails might
be due to inherent properties of the turbulent field, which
might be different from the simple picture of an Eulerian
Gaussian pdf and an exponential Lagrangian correlation
for u0.
[24] In this paper, these open questions are addressed. A

careful examination of the dependence of turbulent statistics
on the mean flow U estimation is performed. Possible
dependence on spatial inhomogeneity is studied, partition-
ing the domain into approximately homogeneous regions.
Finally, an attempt to resolve seasonal time dependence is
performed.

3. Data and Methods

3.1. Drifter Data Set

[25] As part of various scientific and military programs,
surface drifters were launched in the Adriatic in order to
measure the temperature and currents near the surface. Most
of the drifters were of the CODE-type and followed the
currents in the first meter of water with an accuracy of a few
cm/s [Poulain and Zanasca, 1998; Poulain, 1999b]. They
were tracked by, and relayed SST data to, the Argos system
onboard the NOAA satellites. More details on the drifter
design, the drifter data, and the data processing are given by
Poulain et al. [2004] and P.-M. Poulain et al. (Mediterra-
nean surface drifter measurements between 1986 and 1999
[CD-ROM], in preparation, 2004) (hereinafter referred to as
Poulain et al., in preparation, 2004). Surface velocities were
calculated from the low-pass filtered drifter position data
and do not include tidal/inertial components. The Adriatic
drifter database includes the data of 201 drifters spanning
the time period between 1 August 1990 and 31 July 1999. It
contains time series of latitude, longitude, zonal and merid-
ional velocity components, and sea surface temperature, all
sampled at 6-hour intervals. Owing to their short operating
lives (half-life of about 40 days), the drifter data distribution
is very sensitive to the specific locations and times of
drifter deployments. The maximum data density occurs in
the southern Adriatic and in the Strait of Otranto. Most of
the observations correspond to the years 1995–1999.
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Details on the space and time distribution of the data set are
given by Poulain [2001].

3.2. Statistical Estimate of the Mean Flow:
Averaging Scales

[26] Estimating the mean flow U(x, t) is of crucial
importance for the identification of the turbulent component
u0, since u0 is computed as the velocity residual following
trajectories. If the space scales and timescales of U(x, t) are
not correctly evaluated, they can seriously contaminate the
statistics of u0. Particularly delicate is the identification of
the space scales of the mean shears in U, since they can be
relatively small (of the same order as the scales of turbulent
mesoscale variability), and, if not resolved, they can result
in persistent tails in the autocovariances and spuriously high
estimates of turbulent dispersion [e.g., Bauer et al., 1998].
Identifying a correct averaging scale La for estimating U is
therefore a very important issue for estimating the u0

statistics.
[27] Various methods can be used to estimate U. Here we

consider two methods: the classic method of bin averaging
and a method based on optimized bicubic spline interpola-
tion [Inoue, 1986; Bauer et al., 1998]. Results from the two
methods are compared, in order to test their robustness. The
results from bin averaging are discussed first, since the
method is simpler and it allows for a more straightforward

analysis of the impact of the averaging scales on the
estimates.
[28] For the bin averaging method, La simply corresponds

to the bin size. In principle, given a sufficiently high number
of data, an appropriate averaging scale L̂a can be identified
such that the mean flow shear is well resolved. The u0 and U
statistics are expected to be independent on La for La < L̂a.
In practical applications, though, the number of data are
limited and the averaging scale is often chosen as a
compromise between the high resolution, necessary to
resolve the mean shear, and the data density per bin,
necessary to ensure significant estimates. In practice, then,
La is often chosen as La > L̂a, and the asymptotic indepen-
dency of the statistics on La is not reached [Bracco et al.,
2003].
[29] Poulain [2001] tested the dependence of the mean

and eddy kinetic energy, MKE and EKE, on the bin
averaging scale La for the 1990–1999 data set. Circular,
overlapping bins with radii varying between 400 and
12.5 km were considered. It was found that in the consid-
ered range, EKE and MKE (computed over the whole basin)
do not converge toward a constant at decreasing La. A
similar calculation is repeated here (Figure 2), considering
some modifications. First of all, we consider square bins
nonoverlapping, to facilitate the computation of turbulent
statistics, such as R(t), which involve particle tracking.

Figure 2. Binned eddy kinetic energy (EKE) and mean kinetic energy (MKE) computed over the whole
basin versus bin size La. Also indicated are EKE from spline estimates and number of independent data used
in the estimates, as ratio between data belonging to significant bins, NLa, and total amount of data, Ntot.
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Also, the EKE and MKE estimates are computed consider-
ing only ‘‘significant’’ bins, i.e., bins with more than 10
independent data, nbi > 10, where nbi is computed resam-
pling each trajectory with a timescale T = 2 days, on the
basis of previous results from Falco et al. [2000] and
Poulain [2001]. The cut-off value nbi = 10 has been chosen
as a compromise to ensure both significant estimates inside
each bin and bin spatial coverage. As noticed by Bracco et
al. [2003], higher values (nbi > 30) would be more appro-
priate, especially for higher-order statistics, but in practice
this is not feasible because the spatial coverage would be
too sparse. Finally, the values of EKE and MKE are
displayed in Figure 2 together with a parameter, NLa/Ntot,
providing information on the statistical significance of the
results at a given La. NLa/Ntot, in fact, is the fraction of data
actually used in the estimates (i.e., belonging to the signif-
icant bins) over the total amount of data in the basin Ntot.
[30] The behavior of EKE and MKE in Figure 2 is

qualitatively similar to that shown by Poulain [2001], even
though the considered range is slightly different and reaches
lower values of La (bin sizes vary between 1� and 0.05�).
The values of EKE and MKE do not appear to converge at
small La, but the interesting point is that they tend to vary
significantly for La < 0.25�, i.e., in correspondence to the
drastic decrease of NLa/Ntot. This suggests that the strong
lack of saturation at small scales is mainly due to the fact
that increasingly fewer bins are significant and therefore the
statistics themselves become meaningless. These consider-
ations suggest that the ‘‘optimal’’ scale La, given the
available number of data Ntot is of the order of 0.25�, since
it allows for the highest shear resolution while still main-
taining a significant number of data (�80%). This choice is
in agreement with previous results by Falco et al. [2000]
and Poulain [1999b].
[31] The binned mean field U obtained with the 0.25� bin

(i.e., between 19 and 28 km) is shown in Figure 4. As it can
be seen, it is qualitatively similar to the U field obtained by
Poulain [2001, Figure 1b] with a 20-km circular bin
average.
[32] As a further check on the binned results and on the

La choice, a comparison is performed with results obtained
using the spline method [Bauer et al., 1998, 2002]. This
method, previously applied by Falco et al. [2000] to the
1994–1996 data set, is based on a bicubic spline interpo-
lation [Inoue, 1986] whose parameters are optimized in
order to guarantee minimum energy in the fluctuation field
u0 at low frequencies. Notice that with respect to the binning
average technique, the spline method has the advantage that
the estimated U(x) is a smooth function of space. As a
consequence, the values of the turbulent residuals u0 can be
computed subtracting the exact values of U along trajecto-
ries, rather than considering discrete average values inside
each bin. In other words, the spline technique allows for a
better resolution of the shear inside the bins.
[33] Details on the choice of the spline parameters are

given in Appendix A. The resulting statistics are compared
with the binned results in Figure 2. The turbulent residual u0

has been computed subtracting the splined U, and the
associated EKE have been calculated averaging over bins,
as function of La. The EKE values change much less in the
splined case than in the binned case. In the case of the
binned U described before, in fact, the estimates of U and u0

inside each grid change with La and deteriorate as La
decreases. In addition to this, the number of significant
bins also decreases, changing the global estimates. For the
splined case, only this last aspect plays a role, so that it is
not surprising that the dependence on La is weaker. Only for
very small bin sizes, in fact, EKE appears to change due to
the small number of significant bins. Notice that the splined
EKE values are very similar to the binned ones for bins in
the range between 0.35� and 0.25�. This provides support
for the choice of La = 0.25�. Also, a direct comparison
between the splined (not shown) and binned U fields show a
great similarity, as already noticed also in the case of Falco
et al. [2000].
[34] In conclusion, the spline analysis confirms that the

choice of La = 0.25� is appropriate, since it provides robust
estimates while resolving the important spatial variations of
the mean flow. It should be noted, though, that the choice is
far from perfect. For instance, it only partially resolves the
mesoscale given that the Rossby radius of deformation in
the Adriatic Sea can be smaller than 10 km. Also, the flow
scales are expected to vary significantly in space and time,
while the binning scale is considered fixed. This is due to
the fact that changing binning size would make it difficult to
compare results in a straightforward way. The choice, then,
should be regarded as the best compromise between reso-
lution, sampling coverage, and simplicity in computation
and interpretation.

3.3. Homogeneous Regions for Turbulence Statistics

[35] We are interested in identifying regions where the
u0 statistics can be considered approximately homoge-
neous, so that the main turbulent properties can be
meaningfully studied. In a number of studies in various
oceans and for various data sets [Swenson and Niiler,
1996; Bauer et al., 2002; Veneziani et al., 2004], ‘‘ho-
mogeneous’’ regions have been identified as regions with
consistent dynamical and statistical properties. A first
qualitative identification of consistent dynamical regions
in the Adriatic Sea can be made based on the literature
and on the knowledge of the mean flow and of the
topographic structures (Figure 1).
[36] First of all, two boundary current regions can be

identified, along the eastern coast (Eastern Adriatic Current,
EAC) and western coast (Western Adriatic Current, WAC).
These regions are characterized by strong mean flows and
well-organized current structure. A third region can be
identified with the central area of the cyclonic gyre in the
south/central Adriatic (Central Gyre, CG). This region is
characterized by a deep topography (especially in the
southern part) and by a weaker mean flow structure. Finally,
the northern part of the basin, characterized by shallow
depth (<50 m), could be considered as a forth region
(Northern Region, NR). With respect to the other regions,
though, NR appears less dynamically homogeneous, given
that the western side is heavily dominated by buoyancy
forcing related to the Po river discharge, while the eastern
part is more directly influenced by wind forcing. Also, NR
has a lower data density with respect to the other regions
[Poulain, 2001]. For these reasons, in the following we will
focus on EAC, WAC, and CG. A complete analysis of NR
will be performed in future works, when more data will be
available.
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[37] As a second step, a quantitative definition of the
boundaries between regions must be provided. Here we
propose to use as a main parameter to discriminate between
regions the relative turbulence intensity g =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKE=MKE

p
.

The parameter g is expected to vary from g < 1 in the
boundary current regions dominated by the mean flow to
g > 1 in the central gyre region dominated by fluctuations.
[38] A scatterplot of g versus

ffiffiffiffiffiffiffiffiffiffiffi
MKE

p
is shown in

Figure 3. Two well-defined regimes can be seen, with
g < 1 and g > 1, respectively. The two regimes are separated
by

ffiffiffiffiffiffiffiffiffiffiffi
MKE

p
� 6 � 7 cm s�1. On the basis of this result, we

use the (conservative) value
ffiffiffiffiffiffiffiffiffiffiffi
MKE

p
= 8 cm s�1 to discrim-

inate between regions. The resulting partition is shown in
Figure 4. As can be seen, the regions (indicated by the
different shades of the mean flow arrows) appear well
defined, indicating that the criterium is consistent. The
WAC region reaches the northern part of the basin, up to
�44�N, because of the influence of the Po discharge on the
boundary current. The EAC region, on the other hand, is
directly influenced by the Ionian exchange through the
Otranto Strait, and it is limited to the south/central part of
the basin, connected to the cyclonic gyre. The CG region
appears well defined in the center of the two recirculating
cells in the southern and central basin.
[39] It is interesting to compare the regions defined in

Figure 4with the pattern of EKE computed byPoulain [2001,
Figure 4d]. The two boundary regions EAC and WAC, even
though characterized by EKE/MKE < 1, correspond to

regions of high EKE values, EKE > 100 cm2 s�2. The CG
region instead is characterized by low EKE values, approx-
imately constant in space. The three regions, then, appear to
be quasi-homogeneous in terms of EKE values, confirming
the validity of the partition. The northern region NR, on the
other hand, shows more pronounced gradients of EKE, with
EKE > 100 cm2 s�2 close to the Po delta, EKE �50 cm2 s�2

in the central part, and lower values in the remaining parts.
This confirms the fact that NR cannot be considered a well-
defined homogeneous region as are the other three, and it will
have to be treated with care in the future, with a more
extensive data set.
[40] The main diagnostics presented hereafter and com-

puted for each region are as follows.
[41] 1. Characterization of the u0 pdf. Values of skewness

and kurtosis will be evaluated and compared with standard
Gaussian values.
[42] 2. Estimation of u0 autocorrelations, ri(t) = Rii(t)/si

2.
They will be qualitatively compared to the exponential
shape (equation (7)), and estimates of e-folding timescales
will be performed. Estimation of integral quantities such as
diffusivity K from equation (2) and integral timescale T
from equation (8) will also be performed.
[43] First, these quantities will be computed as averages

over the whole time period, and then an attempt to separate
the data seasonally will be performed.
[44] Since all the quantities are expressed as vector

components, the choice of the coordinate system is expected

Figure 3. Ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKE=MKE

p
versus

ffiffiffiffiffiffiffiffiffiffiffi
MKE

p
for significant 0.25� � 0.25� bins in the basin.
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to play a role in the presentation of the results. It is expected
that the mean flow (when significant) could influence
turbulent features resulting in an anisotropy of statistics.
Thus, in the following, we consider primarily a ‘‘natural’’
coordinate system, which describes the main properties
more clearly. The natural Cartesian system is obtained
rotating locally along the mean flow axes. The components
of a quantity Q in that system are the streamwise component
Qk and the across-stream component Q?.

4. Results

4.1. Statistics in the Homogeneous Regions

[45] Here the statistics of u0 in the three regions identified
in section 3.3 are computed averaging over the whole time
period, i.e., assuming stationarity over the 9 years of mea-
surements. In all cases, u0 is computed as residual velocity
with respect to the 0.25� � 0.25� binned mean flow, as
explained in section 3.2. In some selected cases, results from
other bin sizes and from the spline method are considered as
well, in order to further test the influence of the U estimation
on the results. As in section 3, the statistics are computed only
in the significant bins, nbi > 10. Also, data points with
velocities higher than 6 times the standard deviations have
been removed. They represent an ensemble of isolated events

that account for 10 data points in total, distributed over four
drifters. While they do not significantly affect the second-
order statistics, they are found to affect higher-ordermoments
such as skewness and kurtosis. The number of independent
data points Ni for each region (computed for T = 2 days) is
shown in Table 1.
4.1.1. Characterization of the Velocity pdf
[46] The pdf of u0 is computed normalizing the velocity

locally, using the variance sb2 computed in each bin [Bracco
et al., 2000]. This is done in order to remove possible
residual inhomogeneities inside the regions. The pdfs are
characterized by the skewness Sk = hu03i/s3 and the kurtosis

Table 1. Number of Independent Data Points Ni for the Three

Regions, EAC, CG, and WAC, Over the Whole Time Period, and

for the Two Seasons, Summer-Fall, Winter-Spring, Over the Three

Regions

Region Number of Data Points

EAC 1345
CG 1125
WAC 1057

Season Number of Data Points

Summer-Fall 1533
Winter-Spring 1258

Figure 4. Mean flow (arrows) and homogeneous regions (shaded). Maximum velocity arrow is 30 cm/s.
The regions, from light to dark shades, are NR, EAC, CG, WAC.
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Ku = hu04i/s4. Here we follow the results of Lenschow et al.
[1994], which provide error estimates for specific processes
at different degrees of non-Gaussianity as a function of the
total number of independent data Ni. In the range of our data
(Table 2), the mean square errors of Sk and Ku from
Lenschow et al. [1994] appear to be (dSk)2 � 10/Ni,
(dKu)2 � 330/Ni. Notice that these values can be considered
only indicative, since they are obtained for a specific
process.
[47] Before going into the details of the results and

discussing them from a physical point of view, a prelimi-
nary statistical analysis is carried out to test the dependence
of the higher moments Sk and Ku on the bin size, similarly
to what was done in section 3.2 for the lower-order
moments and as discussed by Bracco et al. [2003]. In
Figures 5a and 5b, estimates of Sk and Ku computed over
the whole basin (in Cartesian coordinate) are shown, at
varying bin sizes from 1� to 0.2� (smaller bins are not
considered given the small number of independent data; see
Figure 2). Given that the total number of independent data is
of the order of Ni � 4000, the error estimates from
Lenschow et al. [1994] suggest

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dSkð Þ2

q
� 0.05,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dKuð Þ2

q
�

0.25. As can be seen, the values of Sk and Ku do not change
significantly in the range 0.5� � 0.25�. Values of Sk and Ku
have also been computed using splined estimates (not
shown), and they are found to fall in the same range. These
results confirm the choice of the 0.25� binning of section
3.2. Notice that since Sk and Ku in Figures 5a and 5b are
computed averaging over different dynamical regions, their
values do not have a straightforward physical interpretation.
We will come back to this point in the following, after
analyzing the specific regions.
[48] The pdfs for the three regions computed with the

0.25� binning are shown in Figures 6a, 6b, and 6c in natural
coordinates, while the Sk and Ku values are summarized in
Table 2. For each region, Ni � 1000 (see Table 1), so thatffiffiffiffiffiffiffiffiffiffiffiffiffi

dSkð Þ2
q

� 0.1,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dKuð Þ2

q
� 0.5. Furthermore, a quantitative

test on the deviation from Gaussianity has been performed
using the Kolmogorov-Smirnov test [Priestley, 1981; Press
et al., 1992]. Notice that the K-S test is known to be mostly
sensitive to the distribution mode (i.e., to the presence of
asymmetry, or equivalently to Sk being different from zero),
while it can be quite insensitive to the existence of tails in
the distribution (large Ku). More sophisticated tests should
be used to guarantee sensitivity to the tails.
[49] Let’s start discussing the Eastern boundary region,

EAC. The Sk is positive and significant in the along
component (Skk � 0.48), while it is only marginally
different from zero in the cross component (Sk? � �0.14).
Positive skewness indicates that the probability of finding
high positive values of u0k is higher than the probability of
negative high values (while the opposite is true for small
values). This is also shown by the pdf shape (Figure 6a).
Physically, this indicates the existence of an anisotropy in

the current, with the fluctuations being more energetic in
the direction of the mean flow. This asymmetry is not
surprising, given the existence of a privileged direction in
the mean. This fact has long been recognized in boundary
layer flows [e.g., Durst et al., 1987]. The cross
component, on the other hand, does not have a privileged
direction and its Sk is much smaller, as shown also by
the pdf shape. The values of the kurtosis Ku are around 4
for both components, indicating high probability for
energetic events. This is clear also from the high tails
in the pdf.
[50] The K-S statistics computed for the pdfs of Figure 6a

are a = 0.012 for u0k indicating rejection of the null
hypothesis (that the distribution is Gaussian) at the 95%
confidence level. For the cross component u0?, instead, a =
0.09, so that the null hypothesis cannot be rejected. It is
worth noting that the estimates of a depend on the number
of independent data Ni, which in turn depends on T. Here T
is assumed T = 2 days. For the cross component, this is
probably an overestimate (as it will be shown in the
following; see Figure 7b), and T = 1 day is probably a better
assumption. Even if computed with T = 1 days, a = 0.04 for
u0?, suggesting that the Gaussian hypothesis can be only
marginally rejected.
[51] The results for the western boundary region WAC

are qualitatively similar to the ones for EAC. The Sk
values in natural coordinates are Skk � 0.52 and Sk? �
0.09, suggesting the same along current anisotropy found in
EAC. Note that the total value of Sk computed over the
whole basin (Figure 5a) is approximately zero, because the
two contributions from the two boundary currents nearly
cancel each other when computed in fixed Cartesian
coordinates.
[52] Also, the structure of the pdfs (Figure 6b) are

qualitatively similar to the EAC ones, exhibiting a clear
asymmetry and high tails, especially for u0k. The K-S
statistics are a = 0.027 for u0k, suggesting a significant
deviation from Gaussianity. For u0?, on the other hand, a =
0.4 (a = 0.097 for T = 1 day), which is not significantly
different from Gaussian.
[53] The central region, CG, has lower values of Sk in

both components (0.16 and �0.02, respectively). This is
shown also by the pdf patterns (Figure 6c), which are more
symmetric than for EAC and WAC. This is not surprising
given that the mean flow is weaker in CG, so that there is no
privileged direction. The tails, on the other hand, are high
also in CG, as shown by the Ku values that are in the same
range (and actually slightly higher) than for EAC and WAC.
The K-S statistics do not show a significant deviation from
Gaussianity in any of the two components, a = 0.44 for u0k
and a = 0.33 for u0? (a = 0.058 for T = 1 day). This is due to
the fact that the K-S test is mostly sensitive to the mode, as
explained above.
[54] In summary, the turbulent component along the mean

flow is significantly non-Gaussian and, in particular, asym-
metric in both boundary currents. The strong mean flow
determines the existence of a privileged direction, resulting
in anisotropy of the fluctuation, with more energetic events
in the direction of the mean. The central gyre region and the
cross component of the boundary currents do not appear
significantly skewed. For all regions and all components,
though, the kurtosis is higher than 3, consistent with other

Table 2. Values of Skewness Sk and Kurtosis Ku in Natural

Coordinates in the Three Zones

Region Skk Sk? Kuk Ku?
EAC 0.48 �0.14 3.9 4.1
CG 0.16 �0.02 4.1 4.2
WAC 0.52 0.09 3.8 4.1
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recent findings [Bracco et al., 2000]. indicating the likeli-
hood of high energy events.
4.1.2. Autocorrelations of u00

[55] The autocorrelations in natural components are
shown in Figures 7a and 7b The along component results

rk(t), are shown in Figure 7a for the three regions and for
the whole basin. Error bars are computed as 1/N where N is
the number of independent data for each time lag t. The
autocorrelation for the whole basin shows two different
regimes with approximately exponential behavior. The

Figure 5. Binned (a) skewness and (b) kurtosis in Cartesian coordinates (x � zonal, y � meridional)
computed over the whole basin versus bin size La. Also indicated is the number of independent data used
in the estimates, as ratio between data belonging to significant bins, NLa, and total amount of data, Ntot.
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Figure 6. Pdfs of turbulent velocity u0 in natural coordinates for the three regions: (a) EAC, (b) WAC,
and (c) CG.
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nature of this shape can be better investigated considering
the three homogeneous regions separately. For small lags,
exponential behavior is evident in all the three regions, with
slightly different e-folding timescales: texp � 1.8 days for
EAC and WAC and �1.1 days for CG. The above values
were computed fitting the exponential function on the first
few time lags. This is consistent with the fact that texp is

representative of fluctuations due to processes such as
internal instabilities and direct wind forcing, which are
expected to be different in the boundary currents and in
the gyre center. At longer lags, t > 3–4 days, the behavior
in the three regions become even more distinctively
different. In region EAC, a clear change of slope occurs,
indicating that rk can be characterized by a secondary

Figure 7. Autocorrelations r of turbulent velocity (logarithmic scale) u0 in natural coordinates for the
three regions and for the whole basin: (a) along component rk and (b) cross component r?. Results are
presented with symbols and exponential model fits with solid lines.
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exponential behavior with a slower decay time of �11–
12 days. This secondary scale is present also in the WAC,
even though it is much less marked, while there is no sign of
it in CG. The behavior of the basin average rk, then, appears
to be determined mostly by the EAC region.
[56] In contrast to the along component behavior, the

cross component, r?, (Figure 7b) appears characterized by a
fast decay in all three regions as well as in the basin average
(texp � 0.5–0.7 days), with a significant loss of correlation
for time lags less than 1 day. This can be qualitatively
understood considering as a reference the behavior of
parallel and transverse Eulerian correlations in homoge-
neous isotropic turbulence [Batchelor, 1970]. It indicates
that the turbulent fluctuations, linked to mean flow
instabilities, tend to develop structures oriented along the
mean current. As a consequence, the cross mean flow
dispersion is found to be very fast and primarily dominated
by a diffusive regime, while the along mean dispersion
tends to be slower and dominated by more persistent
coherent structures. This result suggests that a correlation
time of 2 days (as estimated by Poulain [2001] and Falco et
al. [2000]) is actually a measure of mixed properties.
[57] In summary, the results show that the boundary

regions EAC and WAC are intrinsically different from the
center gyre region CG. While CG is characterized by a
single scale of the order of 1–2 days, the boundary currents
appear to be characterized by two different timescales, a fast
one (order of 1–2 days) and a significantly longer one
(order of 11–12 days). This secondary scale is especially
evident in the EAC, and the difference between EAC and
WAC appears, at least at first inspection, significant and
independent on the sampling given that the number of
independent data points Ni is of the same order in both
regions (Table 1). More quantitatively, though, Ni appears
smaller in the WAC than in the EAC of �25%, and this fact
together with other more subtle consequences of sampling
might play a role in the observed difference, as will be
discussed in the following. The physical reasons behind this
two-scale behavior are not completely understood yet, and
some possible hypotheses are presented below.
[58] Falco et al. [2000] suggested that the observed

autocorrelation tails could be due to a specific late summer
1995 event sampled by a few drifters launched in the Strait
of Otranto. In order to test this hypothesis, we have
removed this specific subset of drifters and recomputed
rk. The results (not shown) do not show significant
differences, and the two scales are still evident.
[59] A possible hypothesis is that the two scales are

due to different dynamical processes co-existing in the
system. The short timescale appears almost certainly
related to mesoscale instability and wind-driven synoptic
processes, while the longer timescale might be related to
low-frequency fluctuations in the current, due, for in-
stance, to changes in wind regimes or to inflow pulses
through the Strait of Otranto This is suggested by the
presence of a 10-day-period fluctuation in Eulerian current
meter records [Poulain, 1999a]. In this framework, the
observed difference between EAC and WAC is not easily
explainable, given also that the WAC is strongly influenced
by synoptic forcing ([Cushman-Roisin et al., 2001]) and
that current reversals have also been observed there
[Poulain et al., 2004] (Poulain et al., in preparation,

2004). Possible explanations might be indirectly related to
sampling. If, for instance, reversal episodes are less fre-
quent and closer to the coast in the WAC [Poulain et al.,
2004] (Poulain et al., in preparation, 2004), they might be
less easily sampled by the drifters moving in the main
boundary current. Also, drifters moving in the WAC are
usually faster than in the EAC, so that their traveling time
might be shorter and the longer timescale variability might
be less resolved. Seasonal effects might also play a role, as
further discussed in section 4.2. Another possibility is that
the longer timescale is related to the spatial structure of the
mean flow, namely its curvatures. Such curvature appears
more pronounced and consistently present in the circulation
pattern of the EAC than in the WAC, in agreement with the
fact that the secondary scale is more evident in EAC.
Finally, the long time correlation might stem from the fact
that the mean is not truly stationary, so that the assumption
of scale separation between u0 and U is being partially
violated. At this point, not enough data are available to
quantitatively test these hypotheses and clearly single out
one of them.
4.1.3. Estimates of K and T Parameters
[60] From the autocorrelations of Figures 7a and 7b, the

components of the diffusivity and integral timescale equa-
tions (2) and (8) can be computed by integration. T and K
are input parameters for models, and are therefore of great
importance in practical applications. Estimates of the natural
components of T, Tk(t) and T?(t), are shown in Figures 8a
and 8b for the three regions and for t < 10 days. The
behavior of the K components is the same as for T, since for
each component T(t) = K(t)/s2 (equation (8)). The values of
Tk(t), T?(t), Kk(t), and K?(t) at the end of the integration,
i.e., at t = 10 days, are reported in Table 3.
[61] The along component Tk(t) (Figure 8a) shows a

significantly different behavior in the three regions. In CG,
Tk(t) converges toward a constant, so that the asymptotic
value is well defined, Tk � 1.2 day. This approximately
corresponds to the estimate of texp � 0.8 from Figure 7a. In
EAC, instead, Tk is not well defined, given that Tk(t) keeps
increasing, reaching a value of �2.7 days at t = 10 days,
significantly higher than texp � 1.4 days. Finally, WAC
shows an intermediate behavior, with Tk(t) growing slowly
and reaching a value of �1.9 days, slightly higher than
texp � 1.4 days. These results are consistent with the shape
of rk (Figure 7a) in the three regions. The values of Kk
(10 days) (Table 3) range between 7 � 106 cm2 s�1 and
3.8 � 107 cm2 s�1, showing a marked variability because of
the different EKE in the three regions.
[62] The cross component T?(t) (Figure 8b) shows little

variability in all the three regions, again in keeping with the
r? results (Figure 7b). In all the regions, T?(t) converges
toward a constant value of T? � 0.52–0.78 days, in the
same range as the texp values. More specifically, note that in
WAC, T?(t) tends to decrease slightly, possibly in
correspondence to saturation phenomena due to boundary
effects or due to potential vorticity constraints damping
cross-stream dispersion [e.g., Dwyer et al., 2000]. The
values of K? (10 days) in Table 3 range between 1.4 �
106 cm2 s�1 and 3.1 � 106 cm2 s�1.
[63] In summary, the results show that the cross compo-

nents T? and K? are well defined in the three regions, with
T? approximately corresponding to texp. The along
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components Tk and Kk, instead, are well defined only in CG,
while in the boundary regions and especially in EAC, there
is no convergence to an asymptotic value.
[64] The observed values are quite consistent with the

averages reported by Poulain [2001]. Remarkably, in that
paper, the strong inhomogeneity and anisotropy of the flow
in the basin was outlined, noting that the estimates of the
timescales for the along flow components in the boundary

Table 3. Values of Correlation Time T and Diffusion Coefficient

K in the Three Zones

Region Tk T? Kk K?

EAC 2.7 .78 38 � 106 3.1 � 106

CG 1.2 .63 6.9 � 106 2.9 � 106

WAC 2.0 .52 29 � 106 1.4 � 106

Figure 8. Integral timescales T of turbulent velocity u0 in natural coordinates for the three regions:
(a) along component Tk and (b) cross component T?.
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currents are significantly larger than the one related to the
central gyre.

4.2. Seasonal Dependence

[65] As an attempt to consider the effects of non-
stationarity, a time partition of the data is performed,
grouping them in seasons. The data are not sufficient to
resolve space and time dependence together, since the u0

statistics are quite sensitive, involving higher moments and
time lagged quantities. For this reason, averaging is
computed over the three regions. Together, and two main
extended seasons are considered. On the basis of prelim-
inary tests and of previous results by Poulain [2001], the
following time partition is chosen: a summer-fall season,
spanning July to December, and a winter-spring season,
spanning January to June. The number of independent data
points Ni for each season is shown in Table 1. Notice that
the total value of Ni obtained summing the two seasonal
values is smaller than the total Ni obtained summing the
three region values (Table 1). The reason is that only
significant bins with more than 10 independent data are
considered, so that the number of bins decreases signifi-
cantly when the seasonal partition is considered.
[66] As in section 4.1, u0 is computed as residual velocity

with respect to the 0.25� � 0.25� binned mean flow U.
Mean flow estimates in the two seasons are shown in
Figures 9a and 9b. As discussed by Poulain [2001], during
summer-fall the mean circulation appears more energetic
and characterized by enhanced boundary currents. During
the winter-spring season, instead, mean currents are gener-
ally weaker and the southern recirculating gyre is enhanced.
[67] The u0 statistics during the two seasons are character-

ized by the autocorrelation functions shown in Figures 10a
and 10b. The along component rk(t) (Figure 10a) has a
distinctively different behavior in the two seasons. In
summer-fall, the overall behavior is similar to the one
obtained averaging over the whole period (Figure 7a),
partially because the summer-fall data set is �20% greater
than the winter-spring one. Two regimes can be seen, one
approximately exponential at small lags, and a secondary
one at longer lags, t > 3 days, with significantly slower
decay. This secondary regime is not observed in winter-
spring. As for the cross component r?(t) (Figure 10b), both
seasons appears characterized by a fast decay, as in the
averages over the whole period (Figure 7b).
[68] In order to correctly interpret this result, it is useful to

consider the sampling distribution in regions for each
season. The summer-fall data set appears dominated by
the EAC data (more than 40% of the total) while in the
winter-spring, most of the data belong to the CG regions
(almost 50% of the total) with the EAC and WAC being
approximately equally sampled. This can have a number of
implications. One possibility is that the difference between
seasons is mostly a reflection of the difference in sampling,
with the boundary currents being characterized by a longer
timescales (absent in CG) at all time. This interpretation,
though, would not help explain the observed difference
between the EAC and the WAC (Figure 7). Since the EAC
is more intensely sampled during summer-fall than the
WAC, their difference might be due to an actual intensifi-
cation of low-frequency fluctuations in the summer. Various
possible explanations for the longer timescale in rk(t) have

been discussed in section 4.1 for the whole time average.
They include low-frequency forcing and current fluctua-
tions, as well as the effects of the mean flow curvature in
the boundary currents. The results in Figure 10a do not
rule out any of these explanations, given that the strength
and variability of the boundary currents are intensified
especially in the fall. Additional measurements, also of
different nature, might help to unravel this point in the
future.

4.3. Summary and Concluding Remarks

[69] In this paper, the properties of the Lagrangian me-
soscale turbulence u0 in the Adriatic Sea (1990–1999) are
investigated, with special care to give a quantitative esti-
mate of spatial inhomogeneity and nonstationarity.
[70] The turbulent field u0 is estimated as the residual

velocity with respect to the mean flow U, computed from
the data using the bin averaging technique. In a preliminary
investigation, the dependence of u0 on the bin size La is
studied and a preferential scale La = 0.25� is chosen. This
scale allows for the highest mean shear resolution, while
still maintaining a significant amount of data (�80%).
Values of higher moments such as skewness Sk and kurtosis
Kr are found to be approximately constant in the La range
around 0.25�. Further support to the choice La = 0.25� is
given by comparison with results obtained with independent
estimates of U based on an optimized spline technique
[Bauer et al., 1998, 2002].
[71] The effects of inhomogeneity and stationarity are

studied separately, because there are not enough data to
perform a simultaneous partition in space and time. The
spatial dependence is studied first, partitioning the basin
into approximately homogeneous regions and averaging
over the whole time period. The effects of nonstationarity
are then considered, partitioning the data seasonally, and
averaging over the whole basin.
[72] Three main regions where the u0 statistics can be

considered approximately homogeneous are identified. They
correspond to the two (eastern EAC, and western WAC)
boundary current regions, characterized by both strong
mean flow and high kinetic energy

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKE=MKE

p
< 1Þ,

and the central gyre region CG in the southern and
central basin, characterized by weak mean current and
low eddy kinetic energy

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKE=MKE

p
> 1Þ. The north-

ern region is not included in the study because in
addition to have a lower data density with respect to
the other regions, it appears less dynamically and statis-
tically homogeneous.
[73] The properties of u0 in the three regions are studied

considering pdfs, autocorrelations, and integral quantities
such as diffusivity and integral timescales. Natural coordi-
nates, oriented along the mean flow direction, are used,
since they allow us to better highlight the dynamical
properties of the flow.
[74] The pdfs results indicate that the CG region is in

good approximation isotropic with high kurtosis values,
while the along components of the boundary regions EAC
and WAC show significant asymmetry (positive skewness).
This is related to energetic events occurring preferentially in
the same direction as the mean flow. Both boundary regions
appear significantly non-Gaussian, while the Gaussian
hypothesis cannot be rejected in the CG region.
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[75] Both components of the autocorrelation are ap-
proximately exponential in CG, and the integral parame-
ters Ti and Kii are well defined, with values of the order
of 1 day and 6 106 cm2 s�1, respectively. In the boundary

regions, instead, the along component of the autocorrela-
tion shows a significant ‘‘tail’’ at lags t > 4 days,
especially in EAC. This tail can be characterized as a
secondary exponential behavior with slower decay time of

Figure 9. Seasonal mean flow: (a) winter-spring season (maximum velocity arrow is 24 cm/s) and
(b) summer-fall season (maximum velocity arrow is 32 cm/s).
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�11–12 days. As a consequence, the integral parameters
do not converge for times less than 10 days. Possible
physical reasons for this secondary timescale are dis-
cussed, in terms of low-frequency fluctuations in the
wind regime and in the Otranto inflow, or in terms of
topographic and mean flow curvatures inducing fluctua-
tions in the particle trajectories.

[76] The effects of non-stationarity have been partially
evaluated by partitioning the data in two extended seasons,
corresponding to winter-spring (January to June) and sum-
mer-fall (July December). The secondary timescale in the
along autocorrelation is found to be present only during
summer-fall, when the mean boundary currents are more
enhanced and more energetic. Possible sampling issues

Figure 10. Autocorrelations r of turbulent velocity (logarithmic value) u0 in natural coordinates for the
two extended seasons computed over the whole basin: (a) along component rk; (b) cross component r?.
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related to preferential sampling of the EAC during summer-
fall are discussed.
[77] On the basis of this statistical analysis, the following

indications for the application of transport models can be
given. The statistics of u0, and therefore its modeling
description, are strongly inhomogeneous in the three
regions not only in terms of parameter values but also in
terms of inherent turbulent properties. It is therefore not
surprising that the results of Falco et al. [2000] show
differences between data and model results, given that the
model uses global parameters and assumes Gaussianity over
the whole basin. Only region CG can be characterized by
homogeneous and Gaussian turbulence and therefore can be
correctly described using a classical Langevin equation such
as the one used by Falco et al. [2000]. The boundary
regions, on the other hand, are not correctly described by
such a model, because of the presence of a secondary
timescale and of significant deviations from Gaussianity.
Similar deviations have been observed in other Lagrangian
data in various ocean regions [Bracco et al., 2000], even
though the ubiquity of the result is still under debate [Zhang
et al., 2001]. Non-Gaussian, multi-scale models are known
in the literature [e.g., Pasquero et al., 2001; Maurizi and
Lorenzani, 2001], and their application is expected to
strongly improve results of transport modeling in the
Adriatic Sea.

Appendix A: Spline Method for Estimating U

[78] The spline method used to estimate U [Bauer et al.,
1998, 2002] is based on the application of a bicubic spline
interpolation [Inoue, 1986] with optimized parameters to
guarantee minimum energy of the fluctuation u0 at low
frequencies. This is done by minimizing a simple metrics
which depends on the integration of the autocovariance R(t)
for t > T. In other words, the autocovariance tail is required
to be ‘‘as flat as possible’’ under some additional smoothing
requirements. This method, previously applied by Falco et
al. [2000] to the 1994–1996 data set, has been applied to
the 1990–1999 data set.
[79] The spline results depend on four parameters [Inoue,

1986]: the values of the knot spacing, which determines the
number of finite elements, and three weights associated,
respectively, with the uncertainties in the data, in the first
derivatives (tension), and in the second derivatives (rough-
ness). The tension can be fixed a priori in order to avoid
anomalous behavior at the boundaries [Inoue, 1986]. The
other three parameters have been varied in a wide range of
values (knot spacing between 1� and 0.1�, data uncertainty
between 50 and 120 cm2 s�2 and roughness between 0.001
and 10000). It is found that an optimal estimate of U is
uniquely defined over the whole parameter space except for
the smallest knot spacing, corresponding to 0.1�. In this
case, no optimal solution is found, in the sense that the
metric does not asymptote and the U field becomes increas-
ingly more noisy as the roughness increases. This indicates
that as it can be intuitively understood, there is a minimum
resolution related to the number of data available.
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