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In this paper, a vision-based system for underwater object detection is presented.
The system is able to detect automatically a pipeline placed on the sea bottom, and some
objects, e.g. trestles and anodes, placed in its neighborhoods. A color compensation
procedure has been introduced in order to reduce problems connected with the light
attenuation in the water. Artificial neural networks are then applied in order to classify
in real-time the pixels of the input image into different classes, corresponding e.g. to
different objects present in the observed scene. Geometric reasoning is applied to reduce
the detection of false objects and to improve the accuracy of true detected objects. The
results on real underwater images representing a pipeline structure in different scenarios
are shown. The presence of seaweed and sand, different illumination conditions and
water depth, different pipeline diameter and small variations of the camera tilt angle are
considered to evaluate the algorithm performances.
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1. INTRODUCTION

Most of underwater operations are performed by remote operated vehicles (ROV)

driven by human operators on a support vessel. Due to the complexity of the un-

derwater environment, these tasks are often too expensive and tedious, and require

the continued attention of the human operator to maneuver the robot in murky

waters and in the presence of large hydrodynamic forces.9 For this reason, in these

years, an extensive research is being performed on the development of autonomous

underwater vehicles (AUVs). The main tasks that these vehicles should be able to

perform autonomously are operations such as visual inspection of man-made struc-

tures e.g. pipelines,27 off-shore structures,26 object detection e.g. mines6 and/or

obstacle avoidance.10 In recent years, optical and acoustic systems have been de-

veloped to approach these tasks. Zingaretti27 developed a real-time visual imaging

system for detecting and tracking an underwater pipeline by integrating data about

pipeline edges positions coming from six horizontal strips in the image. Balasuriya

et al.2 developed a system able to recognize visual signals produced by a set of

electro-luminescent panels, representing a particular command for the AUV. Sev-

eral works have been developed in the field of acoustical data. Acoustic systems

(e.g. short base-line, ultra short base-line, long base-line) are generally used for

AUV position determination. Nevertheless, they need to use transponder systems

and do not guarantee sufficient position accuracy due to acoustic shading and multi-

path effects.3 Kristensen and Vestg̊ard developed a multi-sensor integration system

to evaluate the AUV position from acoustical data.18 Buckingham et al. 7 detected
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neoprene coated boards submerged near a pier using the environment noise in wa-

ter. Interesting works on interpretation of acoustical data can be found in Refs. 12

and 16. Lane et al. presented a system for automatic interpretation of 3D objects

based on 2D image information derived from a sector-scanning sonar device.16 The

overall interpretation reaches 86% of success for underwater objects viewed under

different conditions. Foresti et al. presented a real-time system for object recog-

nition in acoustic images.12 A 3D acoustic camera15 is applied to generate range

images of the underwater environment.

In clear water, optical sensors present some advantages with respect to the

acoustical ones. First, they generate higher data rate and with better resolution,

they permit operations requiring high precision and real-time performances. More-

over, many information connected with optical data, like shading, surface marking

and texture, may be useful for object recognition. However, visual-based systems

are dependent on noise of the underwater image acquisition process which is char-

acterized by several mechanisms contributing to the degradation of the video signal

(see Sec. 3).

Several methods have been developed in the recent years to avoid problems con-

nected with underwater imaging and perform automatic inspection of underwater

environments or automatic guidance of underwater vehicles. Some methods consist

in creating a mosaic of photo images of the sea floor and plan the AUV trajectory

in terms of a series of time-tagged station points.10,13,19 This allows the system

to have a large map of the sea bottom, studying only small parts, where the im-

age degradation is small (typically near to the AUV). The main drawback of these

methods, developed for station keeping19 and generalized for motion,21 is the large

amount of data to be stored, that makes them useless for long distances motion

(e.g. pipeline inspection). Moreover, as new images are added to the existing mo-

saic when the AUV moves away from original positions, these methods yield large

overall distortions (the error tends to accumulate in the photo-mosaic as succes-

sive images are added25). Other studies on AUV guidance have been focussed on

the texture analysis of underwater image by co-occurrence matrices.14,22 However,

these methods require a large amount of calculation (and so, time) necessary for the

determination of the co-occurrence matrice elements. Many efforts have been done

also to obtain a correct trajectory of the AUV from monocular5,27 or stereo image

sequences.28 If the image sequence is acquired and sampled at a sufficient high fre-

quency, small frame to frame-disparities make optical flow techniques available.4 If

frame-to-frame disparities are large, a Kalman filter is often used20,24 to perform

temporal integration of extracted features. However, wrong features can introduce

high error rates. Recently, Fusiello et al. have developed an algorithm able to detect

and discard automatically unreliable feature matches over a long image sequence.28

One of the most interesting application of vision-based underwater methods is

the inspection of underwater structures, in particular, pipelines,27 cables14 or off-

shore platforms.5 Oil and gas underwater pipelines need periodic inspections to

control their conditions and to prevent damages due to fishing activity, turbulent

currents and tidal abrasion. An intelligent guidance and control system can improve
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the accuracy of the inspection task and it can avoid problems connected with losing

of concentration of a human operator.

In this paper, a visual system based on neural networks is applied to help an

AUV to perform both visual inspection and navigation tasks. In particular, the

presented system has been designed to identify a pipeline structure placed on

the sea bottom, detect possible obstacles (e.g. trestles) and, in order to evaluate

the AUV position along the pipeline, detect and recognize some landmark objects,

i.e. anodes. The main problem in underwater objects detection, especially when

the object to be identified is a pipeline which is tens of kilometers long, is the

variation of the object characteristics, that may be very different from one image

to another. This is due principally to the presence of fouling that modifies both

the object texture and shape, and to the presence of sand and seaweed that may

partially cover these objects. For this reason, two multilayer perceptrons trained

by the Back Propagation method23 (i.e. neural network algorithms characterized

by a great generalization capability) have been considered to detect respectively

pipeline edges and objects. In order to determine the AUV position, information

about the probability to have a particular landmark (an anode) inside an image

is supplied from an offline database. A match between the recognized anodes and

their positions along the pipeline is applied to estimate the AUV position.

2. SYSTEMS DESCRIPTION

Figure 1 shows a general flowchart of the proposed system. After a color

compensation (see Sec. 3), the size of the input image is reduced to fasten the object

detection process. Two new images are generated (with size reduced to 1/16 and

1/32 of the original one) and analyzed respectively by the Edge Detection module

and by the Anode Detection module. A frequency filtering based on the Fast Fourier

Transform (FFT) was carried out to avoid aliasing problems. The Edge Detection

Module (Fig. 2) uses a neural network (Fig. 3) to provide a binary classification of

the input image into two classes: “pipeline edge” pixels and “background” pixels.

Training patterns are extracted as n× n subimages from image regions containing

pipeline edges and from the image region background. The number of pixels clas-

sified as pipeline edge is counted. If it is over a given threshold Ψ (depending on

pipeline size and focal length and orientation of the camera), the hypothesis that

an obstacle is present in the image is done, and the probability to have found the

obstacle is supplied as a function of the number of pixels classified as edge. The

control passes automatically to the AUV guidance system. If the number of edge

pixels is under this threshold, the classification output is reconstructed as a matrix

and the connected pixels are organized into regions and are then grouped, by a geo-

metrical reasoning method,29 into convergent pairs. A winner-takes-all mechanism

is applied to find the best pair.12 For each region pair, some characteristics as the

region areas and widths and the elongation of the common part of the projections

of the two regions on the pair symmetry axis are extracted and analyzed, and a vote

is assigned to the pair. At the end of the process, the pair with the highest number

of votes is considered the winner. The best fit with a straight line is computed



June 9, 2000 11:27 WSPC/115-IJPRAI 0046

170 G. L. FORESTI & S. GENTILI

Fig. 1. General flowchart of the proposed system.
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Fig. 2. Edge Detection Module: the module gets as input the image compensated reduced to
1/16 and returns pipeline edge equations in original image reference system.

for each region, and the obtained coefficients are used to estimate the equations

of the pipeline borders. A more detailed description of the method is presented in

Ref. 11.

The Anode Detection module (see Fig. 4) uses another dedicated neural network

to classify the image area included between the pipeline borders into two classes:
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Fig. 3. General scheme of a two layer applied BP model with n2 input neurons, n2 hidden
neurons and m output neurons. The n× n subimages to classify are transformed into n2 vectors
and supplied as input to the neural net. The net classifies those images as belonging to one of the
m output classes.

“anode” pixels and “not anode” pixels. Analogous to the previous case, pixels clas-

sified as anode are counted, and a rough probability Pa to have an anode on the

analyzed image is estimated. A test on the Pa value is performed to evaluate if the

anode is present inside the image. In the affirmative case, a more accurate prob-

ability Pb to have an anode is evaluated, by considering the position of classified

pixels in the output image.

To help the driving of the vehicle, an odometer evaluates roughly the position

on the AUV along the pipeline. This is used to retrieve from a database containing

accurate anode positions, the probability PDB to have an anode or not inside the

image. An integration of the probabilities PDB and Pb is performed to have a more

accurate estimation of the AUV position along the pipeline and, if it is necessary,

to perform a resetting of the odometer. The information on AUV position along the

pipeline, together with the edge equations supplied by the Edge Detection module,

allows to evaluate the AUV position and to guide it. When no anode is detected

inside the image, the 3D position of the AUV (less accurate when the AUV is far

from the anode) is supplied only by the odometer measure.
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Fig. 4. Anode Detection Module: the module gets as input the image compensated reduced to
1/32 and returns the probability to have an anode inside the image.

3. ILLUMINATION COMPENSATION IN UNDERWATER IMAGES

The principal problem in underwater image analysis is the high transmission atten-

uation of the light through the sea water. The main causes of the attenuation are

molecular scattering (the ions in the sea water increase the light scattering by about



June 9, 2000 11:27 WSPC/115-IJPRAI 0046

174 G. L. FORESTI & S. GENTILI

30%), particle scattering (small pieces of organic or inorganic material held in sus-

pension in the water can scatter light according to concentration, size distribution,

water conditions and depth) and absorption (light is absorbed by the water itself

and also the organic matter dissolved in it) that all contribute to the degradation of

the underwater image.8,17 The absorption process converts the light energy to other

forms, essentially heat, or photosynthesis. The scattering process does not convert

the light energy to other forms, but re-distributes the light spatially, causing an

attenuation of the signal [see Fig. 5(a)]. Absorption and scattering depend on light

wavelength λ, so that underwater images need a color compensation, because some

colors are more attenuated than others.8

Due to light scattering and adsorption, the intensity I of a plane light wave

passing through a medium decreases in the following way:

I = I0e
−(µ+h)r (1)

where I0 is the intensity of the incident wave, µ is the adsorption coefficient, h the

extinction coefficient (connected with the scattering process) and r is the width

of the medium. The two coefficients µ and h depend respectively on the inverse

of the wavelength λ and on the fourth potency of the wavelength λ; moreover,

both coefficients depend on the complex refraction index n∗ which has a complex

dependence on λ.

In underwater imaging, the problem is complicated by the artificial illumination,

so that the scene is not uniformly illuminated due to a light source placed generally

near to the camera. This implies that objects far from the AUV receive less light

than the nearer ones due to signal attenuation, and a smaller part of the reflected

light is received by the camera, due to the second passage through the attenuating

medium [Fig. 5(b)]. Moreover, collimated AUV illuminators can cause spots of

light on sea bottom that may be recognized as real objects inside the scene (see

e.g. Fig. 6). Neural networks can in some cases recognize the edges of these spots

as something different from pipeline borders.

The underwater image quality depends also on the response curve of the camera,

that may be different from one color to another. Even if the Gray-level images are

used, the color compensation is necessary, as the Gray-level is defined as:

Gray = c1Red+ c2Green+ c3Blue (2)

where Red, Green and Blue are the RGB components of the image, and c1, c2 and

c3 are chosen respectively equal to 0.3, 0.6, 0.1. As too many variables of the system

are uncertain, we suppose [according to Eq. (1)] that the attenuation law per unit

(one pixel) area of the signal is given by:

φ = φ0e
−αd (3)

where α is a variable depending on the channel (R or G or B) of the image, φ0

is the intensity of the incident wave per unit area and φ the attenuated intensity.

In this approximation, the attenuation law 1/r2 of the flux can be neglected, 8,17

because the exponential part prevails.
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(a)

(b)

Fig. 5. (a) The main causes of attenuation of the light in water. (b) The original intensity I1 of
the incident wave is reduced near the target to I2 < I1, due to the attenuation of the medium.
The reflected wave of intensity I3 < I2, passing again through the medium, is attenuated, and
reaches the camera with intensity I4 < I3.

Fig. 6. An example of an underwater image representing a pipeline. Spots of light on sea bottom
may be recognized as real objects inside the scene.
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The main problem in image color compensation is that it is necessary to perform

the correction before the 3D reconstruction of the scene, in order to have better

results in edge or object detection. This means that the distance of object from the

light source must be evaluated in the image reference system, that is a projection

of the real one. However, from the geometry of the system, we evaluate that if we

consider the light as coming from the bottom of the image and distance d as the y

position in the image reference system, this approximation would affect principally

lateral pixels on the top of the image, whose distance is under-estimated. These

pixels, however, are usually very far from the pipeline, that should be maintained

by the guidance system of the AUV in the central part of the image (see Fig. 7)

and a under-estimation of those pixel values would not affect the system.

Fig. 7. Transformation of a 3D scene (on the left, seen from the top) into the 2D image registered
by the camera (on the right); points corresponding to the ones of the 3D scene are reported on
the projection with the apex.

To evaluate the attenuation coefficients αR, αG, αB for the R, G, B components

of the image, 100 pairs of 10× 10 (pixels) subimages with approximately the same

spectrum and intensity have been analyzed. For each pair of subimages, the follow-

ing system has been solved: {
φ = φ0e

−αd

φ′ = φ0e
−αd′ (4)

where d and d′ are the y position (in pixels) of the center of the two subimages (see

Fig. 8), φ and φ′ are the mean values of the subimage pixels for every component

of the image and φ0 the mean value that the region should have if it was in y = 0
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Fig. 8. 10×10 pixel subimages with approximately the same spectrum and intensity, taken from
different parts of the image.

position. The attenuation coefficients αR, αG, αB have been evaluated as the median

of the deduced values for the 100 subimage pairs. To compensate the colors, it is

necessary to have an equal attenuation law for all the channels.

The average value in the Green channel of a pixel distant d from image bottom

is:

φG = φOGe
−αGd (5)

where φ0G is the average value of the pixel if d = 0 and φG is the measured average

value. In order to have the same attenuation of the Red component also for the

Green one, the following value is assigned to the pixels:

φG
′ = φ0Ge

−αRd =
φG

e−αGd
e−αRd = φGe

−(αR−αG)d (6)

Analogously, the following new value is assigned to the Blue component of the

pixel:

φB
′ = φBe

−(αR−αB)d (7)

where φB is the measured pixel value and φB
′ the corrected one.

As the attenuation law is the same for all channels into the corrected image,

a correction of the Gray-scale image could be easily performed by multiplying the

pixel values by the term eαRd. However, this compensation would not recover the

information on texture and contrast lost due to bad illumination of image regions

far from the light source. As the proposed system is more sensitive to shape (e.g. sea

bottom-pipeline, edge-pipeline) than to intensity, this correction has not been con-

sidered. Figure 9 shows a general flowchart of the color compensation method, while

in Fig. 10 an example of color compensation is presented.

4. UNDERWATER OBJECTS DETECTION

In order to accomplish the AUV navigation task, it is necessary to detect the

presence of objects along the pipeline, for two different reasons:



June 9, 2000 11:27 WSPC/115-IJPRAI 0046

178 G. L. FORESTI & S. GENTILI

Fig. 9. General flowchart of the color compensation method.

(a) obstacle avoidance (detection must be done in real-time, to permit to the AUV

to change its direction); trestles represent the more frequent obstacles that can

be found along a pipeline;

(b) if the position of some particular objects (landmarks) is well known, it is possi-

ble to validate the AUV position by integrating information about the detected
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Fig. 10. An example of color compensation for an underwater image representing a pipeline;
(a) original image, (b) compensated image.

objects with a database containing object positions along the pipeline and in-

formation on the AUV position supplied by an odometer; anodes represent

possible landmarks.

4.1. Trestles Detection

Trestles are very tall objects used to keep the pipeline close to the sea bottom.

They are characterized by four legs driven into the ground and four legs in the

opposite direction, used to put the trestle in the right position [see Fig. 11(a)].

As they are tall objects, their detection is necessary during the AUV navigation

to avoid collisions. Generally, the image which contains such objects is extremely

complex, and, it is really difficult to apply a classical object recognition method to

identify trestles. However, if an image contains a trestle, a great number of pixels is

classified as edge by the neural network trained to detect pipeline edges. Therefore,

it is possible to detect their presence only by verifying that the number of pixels

classified as edges is greater than a given threshold. Figure 11(b) shows the obtained

classification on the image in Fig. 11(a). A probability function to be near to an

obstacle like a trestle can be obtained as: PT =
n−Ψ

Φ−Ψ
n > Ψ

0 otherwise
(8)

where n is number of pixels classified as edge in the analyzed image, Φ is the

maximum number of pixels classified as edges on a long test image sequence and Ψ

is the maximum number of pixels classified as edge in an image in which there is

no trestle.

4.2. Anodes Detection

Anodes are added to the pipeline to avoid corrosions. Due to the existence of dif-

ferent anode types, i.e. characterized by different materials and different shapes,



June 9, 2000 11:27 WSPC/115-IJPRAI 0046

180 G. L. FORESTI & S. GENTILI

Fig. 11. (a) An example of a trestle object, (b) edge detection by applying neural network to the
image in Fig. 7(a).

it is complex to learn a neural network to classify all different types of anodes as

the same object. Some examples of anodes are presented in Fig. 12. For anode de-

tection, a more specialized neural network, trained by Back Propagation method,

has been developed. Like in the edge detection case, it is necessary to perform an

image reduction to avoid too long processing times. In particular, the input image,

after a color compensation, is reduced to 1/32 of the original image. Unlike the

previous case, the neural network learning was made by patterns of size 17 × 17

pixels, and two classes are chosen:anode and not anode. Anode learning patterns

contain examples of different kinds of anodes. If the anode is present in the image,

at least 70% of the pixels are classified as “anode,” otherwise, if there is no anode,

less than 10% of the pixels are classified as “anode,” even if in most cases they are

exactly 0. A rough probability to have an anode in a given image is obtained as:

Pa =
na

N
(9)

Fig. 12. (a) An anode on a pipeline covered by gunite. There is a small difference of intensity
from the anode and the pipeline itself and no difference between the anode radius and the pipeline
radius. (b) The gunite is not covering the pipeline. The intensity differene is greater than in the
previous case and there is a difference between the pipeline and the anode radius. (c) The AUV
is approaching the anode and consequently only a part of it can be seen.
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where na is the number of pixels classified as anode in the considered image and

N is the total number of pixels in the same image. If the anode dimensions are

small, it may happen that only a part of the pixels are classified as anode, even if

the anode presence is absolutely certain, i.e. probability equal to 1. In these cases,

we obtain a value of Pa belonging to the range (0.7, 1). For this reason, a more

accurate probability Pb is computed. Let r be the radius of the anode that can be

estimated as:

r =

√∑
i (ai − c)2

na
(10)

where ai = (ax, ay)i is the position of each pixel classified as anode and c is the

barycentre of the anode defined as:

c =

∑
i ai

na
. (11)

The probability Pb to have an anode is then estimated as:

Pb =
Np

NT
(12)

where Np is the number of pixels classified as anode inside a circle of radius r with

center coincident with the barycentre of the anode and NT is the total number of

pixels inside that circle. In this way,

(a) if Np = NT ⇒ Pb = 1,

(b) if Np = 0⇒ Pb = 0

(c) for every Np, Pb ∝ Np.

For the anodes presented in Fig. 12, the probabilities Pa are respectively 0.94, 0.75

and 0.56, while probabilities Pb are all equal to one.

4.3. AUV Position Determination

The AUV position is measured by an odometer which produces an error that in-

creases as the AUV goes away from the last known position. This error is due

principally to the presence of currents that do not permit to the AUV a rectilinear

and uniform motion. Landmark detection can be used to obtain an estimate of

the AUV position along the pipeline. The system resets automatically the odome-

ter sensor when the probability PNN to have found an anode given by the neural

network is over a threshold and the match with the database is positive.

Let us suppose that the probability density function f(γ) of the error γ on the

AUV position along the pipeline is a Gaussian function centered on the last known

position s0, i.e.

f(γ) =
1√
2σ2

γ

e
(γ−s0)2

2σ2
γ . (13)

Let S be a 1D reference system with origin in s0 (position of the last detected

landmark) and orientation coincident with that of the pipeline (Fig. 13). Let s be
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Fig. 13. AUV motion along the pipeline. S is the real coordinate of the AUV and Ŝ the measured
one.

the real coordinate of the AUV and ŝ the measured one. The real position of the

AUV is given by s = ŝ± γ, so the distribution of s will be:

f(S) =
1√
2σ2

γ

e
(S−Ŝ±γ̄)2

2σ2
γ . (14)

As σγ is time-varying, it is useful to reset the AUV position measure as fre-

quently as possible, to avoid too large errors in s estimation. The match between

the Anode Detection Module, the odometer information on AUV position and a

database containing precise anode positions along the pipeline, can be useful to

deduce the exact position of the AUV along the pipeline and reset the measures of

the odometer sensor. Let sk be the position of the kth landmark. The probability

that the AUV has passed the point sk is given by:

P (s ≥ sk/ŝ) = 1− P (s ≤ sk/ŝ) = 1−
∫ Sk

−∞
f(s)ds . (15)

Information about P (s ≥ sk/ŝ) can be used to activate the neural network to search

for landmarks only when the probability that the AUV is near to a landmark is

high, e.g. the measures of the odometer sensor are reset when P (s ≥ sk/ŝ) > 0.9.

Finally, from Eqs. (14) and (15), it is possible to obtain:

P (S ≥ S0/Ŝ) = 1− P (S ≤ S0/Ŝ) = 1−
∫ S0

−∞

1√
2σ2

γ

e
(s−ŝ±γ̄)2

2σ2
γ dS (16)

and by putting t = S − Ŝ, Eq. (16) becomes:

P (S ≥ S0) = 1− P (S ≤ S0) = 1−
∫ S0−Ŝ

−∞

1√
2σ2

γ

e
(t±γ̄)2

2σ2
γ dt (17)

so that, from the equation P (S ≤ S0) ≥ 0.9 it is possible to numerically evaluate Ŝ.
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5. RESULTS

The presented system is able to find pipeline edges and other objects, e.g. anodes

and trestles, in different underwater environments. A set of about 800 real under-

water images has been considered as test set. The time necessary to our system to

process an image (by a C language program on a 200 MHz Pentium Pro computer)

is about 1.5 seconds.

5.1. Pipeline Edge Detection

Figure 14 shows the estimated pipeline edges for different kinds of pipelines.

Figure 14(a) represents a pipeline placed on a sea bottom characterized by sand

and seaweed. The presence of seaweed and darker sand on the right side of the

image causes a little angle error in best fit line. The seaweed on left side causes

a small translation in edge position due to widening of the classified region. Fig-

ure 14(b) represents a pipeline on seaweed with some debris on the right side. This

fact causes a small translation of left edge. The most interesting scenario is shown

in Fig. 14(c). It represents a typical situation in pipeline inspection: the pipeline

is partially covered by sand on one (left) edge. Also in this situation, the edge is

Fig. 14. Some results of the pipeline edge extraction algorithm in different real situations:
(a) pipeline on sand and seaweed, (b) pipeline on seaweed, (c) pipeline partially covered by sand,
(d) pipeline with a border completely covered by sand.
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correctly detected on the basis of the different texture of the pipeline and the sand.

In all three cases, edges are found with a good approximation, i.e. the minimum

square error on the edge position is 0.87, 0.97 and 0.94, respectively. The errors

are usually only on one edge and in the presence of sand totally covering an edge

(Fig. 14(d)). It is important to notice that, anyway, at least one of the two edges

is found with a good approximation. The robustness of the object detection proce-

dure have been estimated by means of the three measures introduced by Algar and

Theil:1 precision (P ), recall (R) and goodness (G). Let e = eT + eF be the total

number of detected pipeline edges, eT is the number of true detected edges and eF
is the number of false detections. Let E be the total number of edges on the test

set of 700 images. Precision, recall and goodness are defined respectively as ratios:

P =
eT

e
(18a)

R =
eT

E
(18b)

G =
eT − eF

E
. (18c)

The procedure is robust when all these ratios are close to one. On a test set of

700 images, the following values have been found: P = 0.93, R = 0.96 and G = 0.89,

so the proposed method can be considered robust enough to solve the problem of

pipeline edge detection in underwater images.

5.2. Anode Detection

The proposed algorithm for underwater object detection has been tested on a set

of 100 images: 50 images containing anodes and 50 without anodes. The first test

has been performed on images containing only anodes. The algorithm found anodes

in 95% of the input images; moreover, on the test set of 50 images which do not

contain anodes, no anode has been detected.

Like for pipeline edge detection, the P , R and G values (P = aT
a
, R = aT

A
, G =

aT−aF
A

) have been computed, where a = aT + aF is the total number of detected

anodes, aT is the number of detected anodes images containing an anode, aF is the

number of detected images without anodes and A is the total number of anodes on

the test set of 100 images. The following values have been found P = 1, R = G =

0.95 as aF = 0, which demonstrate the robustness of the proposed method.

5.3. Trestles Detection

In order to evaluate the probability to have an trestle inside the image, it is very

important to evaluate correctly the values of Φ and Ψ, i.e. respectively of the max-

imum number of pixels classified as edges in any image sequence and the maximum

number of pixels classified as edge in images in which there is no trestle.

After several tests on more than 50 underwater images, the values Φ∼= 300 and

Ψ ∼= 250 have been found. The parameter Ψ, in particular, is very important as it

determines if the system detects a trestle or not. There are some rare particular
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cases in which, due to the presence of other large objects or a lot of small objects

on the sea bottom, it may happen that images without trestle present a number of

pixels classified as pipeline greater or equal to some others containing a trestle. As

many of those images contain other kinds of obstacles (e.g. drums, garbage, etc.), in

order to guarantee the navigation safety, an opportune value of Ψ has been chosen,

so that the system classifies those images as containing a trestle.

Some tests have been made on a set of 50 images containing trestles, and trestles

have been detected in all cases with a probability PT always over 0.7. However, this

method depends widely on images and principally on the distance of the AUV from

the trestle. A test set of 50 images without trestles has been added to the test set

and the P , R andG values (P = tT
t , R = tT

T , G = tt−tF
T ) have been evaluated, where

t = tT + tF is the total number of detected trestles, tF is the number of detected

trestles in images containing a trestle tF , is the number of detected trestles in

images without trestles and T is the total number of trestles on the whole test set.

The values of P , R and G result respectively in 0.94, 1, 0.94.

It is important to notice that all the images, containing a lot of small objects,

wrongly classified as trestles, are characterized by a very low probability, i.e. P <

0.2.

6. CONCLUSIONS

A vision-based system for underwater object detection has been presented. This

method which can be applied to AUV navigation is able to determine the edges

of pipeline structure, the presence of landmarks like anodes, and of obstacles like

trestles. A color compensation procedure aimed to reduce problems connected with

the light attenuation in the water has been presented.

The method adopted for pipeline edge detection consists of two steps. First, a

neural network is applied to segment the underwater image into different regions

corresponding to pipeline edges or sea bottom; then, all the possible region pairs

are analyzed, in order to determine the right one. Satisfactory results are obtained

also for pipelines partially occluded, i.e. covered by sand.

The method adopted for obstacle determination is based on the evaluation of

the number of pixels classified as edge in the whole image. If this value is greater

than a fixed threshold, the presence of an obstacle in the scene is hypothesized. The

method adopted to evaluate the anode presence inside the image uses a dedicated

network able to classify the image into two classes “anode” and “no anode”. If the

number of pixels classified as anode is over a given threshold, the algorithm passes

to evaluate classified image characteristics in order to evaluate the probability to

have an anode inside the image. A method to evaluate the AUV position from a

matching between this probability and the probability supplied by a database is

presented.

Experimental results show how the presence of seaweed and sand, different il-

lumination conditions and water depth, different pipeline diameter and small vari-

ations of the tilt angle of the camera do not affect the algorithm performances too

much.
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