
respiration and growth) and the fact that species-specific responses to
light availability are more pronounced for photosynthesis than
respiration (Supplementary Figs. 1, 2).

Environmental conditions highlight the link between commu-
nity growth and metabolism
Community metabolism and growth slow as biomass increases inde-
pendently of size composition across all the environments we con-
sidered. In this last section, we leverage differences in environmental
conditions to explore the connection between these density-
dependent rates. We focus on photosynthesis and growth because
they both respond strongly to light availability, while this is less
obvious for respiration (Supplementary Figs. 1, 2).

Light availability modifies the density-dependence of community
growth and photosynthesis rates per unit biovolume, but these rates
remain highly correlated within each environment (Fig. 4a, b). Fur-
thermore, once we account for differences in light intensity (AU = 115
μmol photons m−2 s−1 > PT High = 60 > PT Low= 30), photosynthesis
and growth rates converge across all environments (Fig. 4c). Both
growth and photosynthesis thus respond to increases in biovolume in

a very similar way, indicating a strong level of community regulation
that holds across environments.

We cannot establish if photosynthesis metabolism governs
growth or the other way around24. But our data show that biomass
competition slows metabolism in a very similar and predictable fash-
ion across species (Fig. 2) so that the density-dependent patterns
observed in individual populations (Fig. 1)18 extend to entire commu-
nities throughout their whole growth process (i.e., both when far and
close to equilibrium; Fig. 4).

Discussion
Ecosystem productivity scales predictably with total biomass, inde-
pendently of species size and composition3. These size-independent
patterns seem incompatible with the sublinear scaling of growth and
metabolism observed at the individual level within most taxa5,10,26. We
demonstrate the connection between these scalings by showing that
biomass competition influences organismal metabolism identically
across species of different sizes that compete for similar resources.
These species grow, photosynthesise and respire at different rates per
unitmass when compared at equal population densities, thus focusing

Fig. 3 | Predictions of community respiration based on different models of
metabolic density-dependence. a Schematic showing species-specific declines in
respiration rates per unit biovolume with increasing biovolume. We use these
species-specific relationships, based on monoculture data in each environment, to
test the importance of two factors on community metabolism: (1) biomass com-
position (are metabolic declines driven equally by intra- and inter-specific com-
petitors?), (2) species identity (do species-specific differences considerably affect
community rates?). b Error of the predictions testing factor 1. We can correctly
estimate community respiration rates if we consider the total biovolume of the
community. If we account only for conspecifics, we overestimate community rates.
c Species identity (factor 2) does not significantly affect community respiration. If

we randomise the association between species-specific declines in respiration and
the biovolume of species in the community, we obtain a distribution of estimates
(blue) that contains the prediction made using the correct association (“whole
community”, magenta). Predictions basedon conspecifics are outside of this range.
d Since species identity has minimal effects, we can estimate total community
respiration (green) or growth (purple) using a general scaling between respiration
(growth) per unit mass and total biomass across all species (green arrow in panel
c, refers to respiration). Abbreviations: AU=Australia, PT = Portugal. See Supple-
mentary Figs. 15 and 16 for growth and photosynthesis. Source data are provided as
a Source Data file.
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on body size properties (i.e., classic organismal metabolism-size rela-
tionships). However, the (mostly) sublinear scaling between individual
metabolism or production with body size collapses onto isometric
(linear) scaling when we compare species at equivalent biomass den-
sities. Thus, competition with an equal amount of biomass alters
individual scalings in a defined and predictable way that holds across
species, growth phases and environments, and is independent of the
composition of the biomass. This result solves some of the incon-
sistencies and variability inmetabolic scalings21,29,35–38 (reviewed in refs.
10,26) and shows how essential it is to account for changes in meta-
bolism in response to competitionwhen estimating scaling exponents.

Many species showmetabolic density-dependence in response to
intraspecific competition, including prokaryotes39, unicellular18,21 and
multicellular eukaryotes17,22. The effects of interspecific competition
on metabolism, however, have been explored in a handful of
studies13,40, so it is difficult to predict how competition between spe-
cies affects community functioning. If species in a community com-
pete for similar resources, it might not be surprising that their
metabolismandgrowthdeclinewith increasing (biomass) competition
from other species. What is surprising is that community composition
only minimally influences these metabolic declines. While our com-
munities are less diverse than natural systems, we intentionally chose
phytoplankton species fromdifferent functional groups,with different
sizes (3 orders of magnitude) and pigments that are known tomediate
competitive interactions41–43. The general effects of biomass competi-
tion seem to prevail over these species-specific traits.

One exception is for photosynthesis. Community photosynthesis
was estimatedmoreprecisely from species-specific rates (rather than a
species-naïve “general” approach), possibly because some of our spe-
cies can obtain energy from different sources (e.g., Amphidiniummay
also function as a mixotroph44) or have different capacity to intake or
store resources (which can be size-dependent)30,42. Photosynthesis
rates, indeed, tend to have an unimodal distribution with cell size,
which indicates that species of intermediate sizes have higher photo-
synthetic rates than smaller or larger phytoplankton30. Therefore, per
capita photosynthetic rates might respond differently to increases in
conspecific or heterospecific biomass, affecting community predic-
tions. These species-specific differences were less apparent for
respiration and growth.

A limitation of working with phytoplankton is that we cannot
measure the metabolism of single cells in isolation (N = 1); we need to
estimate it from a population measurement. Despite the variability in
scaling exponents reported for phytoplankton, a recent review

indicates that photosynthesis and respiration scale mostly sublinearly
with cell size across algal phyla26. The per-cell scaling exponents we
obtain when rescaling at the same population densities are clearly
sublinear for photosynthesis and growth but are more variable for
respiration. This variability might be explained by a combination of
stressful environmental conditions (metabolic scaling relationships
often differ between environments28,45) and greater experimental error
on respiration rates which are lower than photosynthesis rates in an
absolute sense. To explore the generality of our results, we manipu-
lated two environmental factors (light and salinity) that are important
for phytoplankton, but we cannot extrapolate how biomass competi-
tion affects metabolism-size scaling in other environments. None-
theless, our data track the entire growth process of communities, from
far to equilibrium until carrying capacity spanning different growth
phases and nutrient regimes. The effects of biomass competition on
individual metabolism-size relationships were consistent across all of
them (Fig. 2).

Importantly our results do not mean that all species in a com-
munity are equally affected by the biomass of intra- and inter-specific
competitors. To test this, we would need to measure the metabolic
response of individual species in a community which is experimentally
unavailable. Competition theory and research suggest that intraspe-
cific competition is often stronger than interspecific competition34,46,
so we would expect differences in how species metabolism responds
to intra- and inter-specific competitors. Our results suggest that even if
there are differences in species responses, these balance each other
out at the community level or are sufficiently small that they can be
ignored. This result, while it also shows that populations growth sub-
linearly, is not compatible with the sublinear growth model presented
in Hatton et al.7; in their model, density-dependence is given by the
biomass of conspecifics only, while interspecific competitors affect
growth with a different functional form which is not what we observe.

Phytoplankton species compete for similar and essential resour-
ces (light and nutrients), so this system might show a strong level of
community regulation that might be weaker for species that use sub-
stitutable resources. Nonetheless, our simplified system shows similar
patterns (no effect of species size on community rates) to those
observed in a variety of ecosystems at or near carrying capacity3,47,
including phytoplankton communities in nature29, mesocosms48, or
over longer successional trajectories in the laboratory13. This con-
sistency suggests that species interactions, such as competition for
resources, can lead to strong regulation of community functioning so
that community-level patterns are more consistent than those at the

Fig. 4 | Declines in community growth rates mirror reductions in photo-
synthesis rates across environments. Growth (a) and photosynthesis rates per
unit biovolume (b) decline with total biovolume density at different rates
depending on the environment, primarily determined by light availability. All rates
are calculated as the geometric mean between consecutive measurements. The
insert in (b) shows that the rates at which growth and photosynthesis per unit

biovolume decline with biomass (slopes) are highly correlated (the broken line has
a slope of 1). c Differences in light availability explain variation in both photo-
synthesis and growth, as these rates converge across all environments once we
standardise photosynthesis for light intensity. Colours identify the treatment based
on geographic location (AU =Australia, PT = Portugal), light (High vs Low) and
salinity (35 vs 20 ppt). Source data are provided as a Source Data file.
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individual or population level8. We look forward to studies that test
these ideas in organisms that compete for non-essential resources and
for which metabolism can be measured individually.

In conclusion, we find that increases in total biomass lead to
consistent changes inmetabolism across species that are interacting in
a community. We do not know the specific mechanism behind these
responses, but ecosystems can display allometric patterns of resource
transport efficiency similar to size-dependent patterns of organismal
metabolism1,4. So the generalised metabolic decline we observe with
biomassmight emerge because of geometric factors (increases in total
biomass density alter the flow of resources according to common
organising principles)1,4 and behavioural or physiological adjustments
to biomass density that are similar between species17,19,21–23,49,50. The
resulting scaling patterns might thus be independent of the specific
nature of interactions, at least when species compete for similar
resources8,51. We offer the first empirical demonstration of this
hypothesis8 and show that community functioning is tightly integrated
– to the point that extending the relationship betweenmetabolism and
mass from organisms to entire communities can give a reliable
representation of community functioning.

Methods
Experimental setups
We combined two geographically distinct datasets of marine phyto-
plankton. Both datasets used species of marine phytoplankton
obtained from culture collections; species were cultured in
temperature-controlled rooms at 22 ± 1 °C using autoclaved Guillard’s
f/2 medium, prepared with filtered natural seawater.

The first dataset (AU) is fromGhedini et al.20, where they grew five
species of marine phytoplankton in three species diversity treatments
over 10 days: monoculture, pairs or communities with all five species.
Each monoculture and species pair were replicated three times and
communities five times (N = 50 cultures). The work was performed at
Monash University, Australia, and the species were obtained from the
Australian National Algae Culture Collection: Amphidinium carterae
(CS-740), Tetraselmis sp. (CS-91), Dunaliella tertiolecta (CS-14), Tiso-
chrysis lutea (CS-177) and Synechococcus sp. (CS-94). All cultures were
placed in cell culture flasks filled to 100ml and grown on a 14–10 hr
light-dark cycle under non-saturating irradiance levels (115μmol pho-
tons m−2 s−1) at ambient salinity (35 ppt). Flasks were shaken and ran-
domly rearranged on the shelves everyday. Nutrientswere addeddaily
by replacing 10%of themedium fromeach flaskwith fresh f/2medium.
All cultures were started with an initial total biovolume ~ 6 × 108μm3

(~ 103μm3μl−1), where biovolume is the product of cell size (volume)
and number of cells and is used as a proxy for biomass in phyto-
plankton. Cultures were sampled on each day for the firstfive days and
on alternate days afterwards for a total of eight sampling times (days 0,
1, 2, 3, 4, 6, 8, 10).

The second dataset (PT, unpublished) was collected at the Insti-
tuto Gulbenkian de Ciência (previously IGC, now GIMM) in Portugal
using five phytoplankton species obtained from the Roscoff Culture
Collection (France): Amphidinium carterae (RCC88), Dunaliella tertio-
lecta (RCC6), Phaeodactylum tricornutum (RCC2967), Tisochrysis lutea
(RCC90), Nannochloropsis granulata (RCC438). These species were
grown either alone in monoculture or together in a community for
16 days under two levels of salinity (35 or 20 ppt) and light (60 or
30μmol photons m−2 s−1) in cross combination to simulate a gradient
of stressful environments.We set up 5 replicate communities (amix of
the five species in equal biovolumes) and 2 replicate monocultures of
each species for each level of salinity and light in glass bottles filled
with 200ml (N = 60 cultures). The position of the cultures was ran-
domisedat each samplingdayand cultureswerebubbled continuously
for mixing. We started with an initial total biovolume of ~ 4 × 109 μm3

(~ 103μm3μl−1) for each treatment. We tracked changes in the abun-
dance, size, and biovolume of species over time through microscopy;

concomitantly, we measured the metabolism of monocultures and
communities using respirometry (photosynthesis and respiration).We
maintained salinity treatments by adding small amounts of distilled
waterwhen needed. Communities andmonocultureswere sampled on
7 and 6 occasions, respectively, over the course of 16 days to measure
changes in biovolume andmetabolism as detailed below (days 2-5-7-9-
13-15 for monocultures, 2-3-7-9−12-14-16 for communities).

Cell size, population and biovolume density
In both experiments, 1ml of sample from each culture was fixed with
1% Lugol’s solution to quantify cell size and abundance. From these
fixed samples, we loaded 10μl onto a cell counting chamber (Neu-
bauer improved), and we took photos of the sample with an Olympus
IX73 inverted microscope using 400x magnification. Photos were
processed in Fiji/ImageJ52 to quantify the cell volume (μm3), number of
cells of each species (μl– 1), and biovolume as their product (μm3 μl– 1).
Cell volume was calculated from the major and minor axis of each cell
by assigning to each species an approximate geometric shape (prolate
spheroid for all species, except Synechococcus, Tisochrysis, and Nan-
nochloropsis for which we assumed a spherical shape)53. The total
biovolume of species mixtures (pairs or communities) was calculated
as the sum of each individual species’ biovolume.

Metabolism
Photosynthesis and respiration rates were measured from changes in
percentage oxygen saturation under light (photosynthesis) or dark
conditions (respiration) using 24-channel sensor dish readers (SDR;
PreSens Precision Sensing GmbH, Germany). Measurements were
performed in 5ml (AU) or 2ml (PT) glass vials with integrated oxygen
sensors approximately in the middle of the photoperiod.

The system was calibrated with 100% and 0% oxygenated water
prior to each experiment. We quantified photosynthesis as the rate of
oxygenproduction under the same light intensity at which the cultures
were grown, over a period of 30min or less if cultures approached
250% earlier (the maximum value the instrument can read). Respira-
tion was quantified as the rate of oxygen decline over 30min following
light exposure. We added a 2% solution of sodium bicarbonate to each
vial to avoid carbon limitation during photosynthesis. We added
blanks prepared with the supernatant of the samples on each SDR
reader to account for drift and bacterial respiration (12 and 24 each
sampling day for the two datasets, respectively).

In both experiments, the rate of photosynthesis or respiration of
the whole sample (VO2; units μmol O2/min) was measured as
VO2 = 1 × ((mamb)/100 × VβO2) following54, where ma is the rate of
change of O2 saturation in each sample (min−1), mb is the mean O2

saturation across all blanks (min−1), V is the sample volume in litres and
βO2 is the oxygen capacity of air-saturated seawater for the tempera-
ture and salinity of the sample (μmol O2/L). The first three minutes of
measurements were discarded for all samples for photosynthesis.
Respiration rates were calculated after 10min of dark when rates
showed a linear decline. Rates of photosynthesis and respiration (μmol
O2/min) were converted to calorific energy (J/min) using the conver-
sion factor of 0.512 J/μmol O2

55 to estimate energy production and
energy consumption, respectively, as in previous work56.

Data analysis
Data were analysed and visualised through a Julia pipeline, using linear
mixed effectmodels in RStudio (version 4.3.1) to test for differences in
exponents and intercepts.
1. Data filtering:Wediscard negative respirationmeasures. Negative

values of respiration are obtained when the slope of the blanks is
steeper than that of the sample, which indicates either some error
in the preparation/seal of the vial or that the sample does not
contain enough (live) phytoplankton biomass to differentiate
their respiration from that of bacteria (blanks). The number of
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discarded samples is: 12/197 (PT monocultures), 11/279 (PT com-
munities), and none in the other dataset: 0/105 (AU mono-
cultures), 0/210 (AU pairs), 0/35 (AU communities). Similarly, we
discard negative photosynthesis values (38 in total: 24 PT mono-
cultures, 14 PT communities). We also removed day 0 for all
analyses as we did not have metabolic data on that first day.

2. Data normalisation: Respiration rates, photosynthesis rates, and
total biovolume values are normalisedby the sample volume (2ml
for PT data, 5ml for AU data), so they are reported in Jmin−1 μl−1 or
μm3 μl−1 respectively.

3. Growth rate: Calculated as gl, t =
lnðBl, t0 =Bl, t Þ

t 0�t . Where Bl, t and Bl, t0 are
two total biovolume measurements performed on sample l at
time t and t0 > t. For the AU experiment, we calculated growth
based on 90% of the previous biovolume because, on each sam-
pling day, we removed 10% of the sample.

4. Scaling of community/population rates to total biovolume and
the effect of species size on these rates:We fit a linear relationship
between the logarithm of respiration (photosynthesis) rates and
the logarithm of biovolume density. Still, we do not assume that
there is an intrinsic power law relationship between these two
quantities. In fact, the growth in biovolume we observe for each
replicate is smaller than two orders of magnitude, not allowing us
to establish a reliable functional form. Nonetheless, the log-log
relationship allows us to find a functional form enabling the
following analysis. For all analyses below, we used linear mixed-
effect models, including sample ID (code) as a random effect to
account for repeated measures. Respiration, photosynthesis, and
biovolume were log10-transformed prior to analyses. Growth was
analysed untransformed using the geometric mean of biovolume
(ln-transformed); this fits a Gompertz growth function which
seems to fit our data better than a power law or GLV. The fits were
done by grouping data in the following ways:
a –Overall scaling ofmonocultures and communities (Fig. 1 and
Supplementary Fig. 1a):weuse total respiration (photosynthesis,
growth) as response variable and the interaction between total
biovolume and scale (monocultures, communities) as pre-
dictors. Species pairs are excluded from this analysis because
they are present in only one environment (AU, see analysis
below). We also test for the effect of species size on each rate,
including average size (log10-transformed) as the predictor, on
the combined monoculture and community data.
b – Differences in scaling between environments (Supplemen-
tary Figs. 1, 2): we analysed the data separately for each geo-
graphic location. We used linear mixed-effect models, including
the interaction between biovolume and scale (monocultures,
pairs, communities) for AU data. For PT data, we used
biovolume, scale (monocultures, communities) and treatment
(orthogonal combinations of low/high light and 20/35ppt
salinity) as predictors. Interactions were removedwhen p >0.25.

5. Species-specific scalings: We used monoculture data to estimate
the relationship between respiration (photosynthesis, growth)
and total biovolume for each strain in each environment
(Supplementary Fig. 3 and Supplementary Table 4). While some
species are the same in the two datasets (i.e., Amphidinium,
Dunaliella, Tisochrysis), they are different strains (genetically and
geographically distinct). Thus, we consider them independently.
We use the ordinary least squares method (OLS) which is
recommendedwhen the error on the x-axis (biovolume) is smaller
than the error on the y-axis (metabolism) and consistent with
previous work3. We test the effect of size on monoculture rates
using average size (log10-transformed) and geographic location
(AU, PT) as predictors (Supplementary Fig. 5 and Supplementary
Table 5).

6. Rescaled individual metabolic rate at fixed biovolume or cell
density: Here, we want to evaluate the slope of metabolism-size

relationships when species are at the same biovolume or cell
density. To do this, we use the monoculture data to rescale the
respiration (photosynthesis, growth) rate of each species (at the
population level) to the value predicted at a fixed biovolume. To
do this, we use a species and environment-specific scaling
(obtained in 5; reported in Supplementary Table 4). In this way,
every datapoint k of species s was rescaled independently as

E*
k = Ek � B*

Bk

� �αh, s
where Ek is the measured respiration rate of

datapoint k, Bk is the measured total biovolume, B* is the target
(fixed) biovolume density (105 μm3 μl−1), and αh, s is the exponent
of the power law fitted at fixed environment h and species s. Such
rescaling keeps the spread of the data on the y-axis (respiration
rates) intact while removing variation on the x-axis (biovolume).

The same procedure can be performed to fix the cell density N*

to a value eE*
k = Ek � N*

Nk

� �αh, s
. We can rescale by density using the

exponent of the biovolume dependence as N*

Nk
= N*�Ss

Nk
�Ss
= B*

s
Bk, s

. We

used a biovolume density of 105 μm3 μl−1, which was in the centre
of the range for Fig. 2. Similarly, we rescaled metabolic rates to a
population density of 104 cells μl−1 which was a compromise
between small and large species. We used a population density of
103 for growth as the larger species had many negative values at
104. We report the values of the scaling exponents obtained for a
wider range of biovolumes and population densities (relevant to
our cultures) in Supplementary Fig. 10.
Average individual respiration rate: by rescaling the total biovo-
lume to a fixed value, we lost the information on the total
number of individuals. We know both B* and the average size of
each species for each datapoint �Sk , thus the number of indivi-
duals is NkðB*Þ= B*

�Sk
. We thus divide the total respiration rates at

fixed biovolume E*
k by NkðB*Þ to calculate individual respiration

rates at each timepoint. Finally, we estimate the scaling expo-
nent of the relationship between rescaled cell rates and cell size
(Fig. 2) using linear mixed-effectmodels (with code as a random
effect). Data were analysed separately for AU and PT data as the
latter also included a size by treatment interaction (light and
salinity). All rates were log10-transformed, including individual
biovolume production.

7. Predictions of community rates from monoculture rates:
a – Respiration and photosynthesis rates per unit of biovo-
lume: We divide the measured respiration rates of each data-
point by the total biovolume ek : = Ek

Bk
. We then fit a linear

relationship between the logarithm of rates per unit of biovo-
lume and the logarithm of biovolume density. Here we fit the
data by grouping for (i) species and environment (species-
specific scaling; note that these scalings are simply the ones
obtained in point 5 minus one that is αh, s � 1), or (ii) environ-
ment only (general scaling).
b – Predict community rates frommonoculture data:We use the
relationship between Respiration/photosynthesis rate per unit
of biovolume and population biovolume density obtained for
monocultures (point 7a) to predict the metabolism per unit of
biovolume in each community with three methods:
– Conspecifics: we use the fits defined in 7a-i (environment and

species) to calculate the metabolic rate of biovolume for
each species and in each environment from the biovolume
density of conspecifics present in the community at each
time point. This approach assumes that the metabolism of a
species is only responsive to the presence of conspecifics,
while other species have no effect. We then sum over all
species to find the community total metabolism.

– Whole community: we use the same fits above (environment
and species, 7a-i) to calculate the metabolic rate of
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biovolume for each species and in each environment from
the total biovolume density of the community at each time
point. This approach assumes that the metabolism of a
species is equally affected by competitors, independently of
their nature – it does not matter who your competitors are,
only howmuchbiomass density surrounds you.We then sum
over all species to find community total metabolism;

– General scaling: we use a general (not species-specific)
relationship between metabolism per unit of biovolume
and biovolume that varies between environments; we
calculate it grouping by environment only (7a-ii). This
approach assumes that the metabolism of a species is
affected by biovolume in a way that is species-independent.
Identity does notmatter; competition affects everyone in the
same way.

To estimate community growth we use directly the fits obtained
in point 5 (species by environment) because growth is already per
unit of biovolume. The “general” scalingwas calculated for growth
in a similar way as above, i.e., grouping by environment only.
c – Predictions of community metabolism (respiration or pho-
tosynthesis) based on species pairs: We calculate the effect of
intraspecific competition in species pairs by fitting the differ-
ence between the expectedmetabolismper unit ofbiovolumeof
each species s in each datapoint k (based on monoculture data)
es, k,predicted � Bαh, s�1

s, k and the average metabolism per unit of
biovolume measured on pairs etot, k,measured =

Etot, k,measured
Btot, k,measured

, where
Btot, k =Bs, k,measured +Bp, k,measured and Etot, k = Es, k + Ep, k but for
metabolism E we cannot know the relative contribution of spe-
cies s and species p (we can only measure the total).
Specifically, we fit a linear relationship to the distribution of
points with coordinates:

X = logðBtot, k,measuredÞ � logðBs, k,measuredÞ

Y= logðetot, k,measuredÞ � logðes, k,predictedÞ
In this way, we can estimate the effect of each species on each
other, obtaining the slopes γp,s that express the effect of the
species p on species s. The obtained values are used to estimate
the effect of all interspecific competitors on themetabolismper
unit biovolume of each species in a community as

es, k,all = es, k,predicted �
Y

p≠s

Bs +
Pp

j = 1Bj

Bs +
Pp�1

j = 1Bj

 !γp, s

ð4Þ

The total community rates are then obtained by summing the
contribution of each species
as Ek,predicted =

Pn
s = 1es, k,allBs, k,measured .

d – Predictions of community growth rates based on species
pairs: we calculate the effect of intraspecific competition in
species pairs by fitting the difference between the expected
growth of each species s in each data point k (based on mono-
culture data) gs, k,predicted � Bs, kαh, s and the average growth
measured on pairs gtot, k,measured calculated as in point 3 above.
Then, we fit a linear relationship to the distribution of points
with coordinates:

X = log Btot, k,measured

� �� logðBs, k,measuredÞ

Y= gtot, k,measured � gs, k,predicted :

In this way, we can estimate the effect of each species on each
other, obtaining the slopes γp, s that express the effect of the

species p on species s. The obtained values are used to estimate
the effect of all interspecific competitors on themetabolismper
unit biovolume of each species in a community as

gs, k,all = gs, k,predicted +
X

p≠s
ln Bs +

Xp

j = 1
Bj

� �
� ln Bs +

Xp�1

j = 1
Bj

� �h i
ð5Þ

The total community rates are then obtained by summing the

contribution of each species as gk,predicted =
P

s
gs, k,allBs, k,measuredP

s
Bs, k,measured

.

e – Prediction error: We calculated the difference (delta)
between the estimates obtained above and the empirical mea-
sures of community rates (on a log scale for respiration and
photosynthesis) to visualise the offset of the prediction for each
hypothesis.
f – Randomisation: We randomised the association between
biovolumes and species-specific scalings by shuffling the
exponents αh,s across species as αh,p(s), where p(s) is the
reshuffling function of species s. Than predictions are made as
Ek �PsBs, kBtot, k

αh,pðsÞ�1 for metabolism. We used a similar
approach for growth.

8. Relationship between photosynthesis and growth across envir-
onments: We calculate the geometric mean of photosynthesis
rates per unit biovolume between consecutive measurements to
have a quantity relatable to the average growth rate (which is also
calculated between consecutivemeasurements, point 3). We then
plot the relationship between photosynthesis per unit biovolume
(geom. mean) and biovolume density, and between growth and
biovolume density. Here biovolume is also the geometric mean
and is log10-transformed in both cases. Finally, to highlight the
connection between these rates and account for differences in
light intensity between treatments, we normalise photosynthesis
by light intensity and plot it against growth.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used and generated in this study have been deposited in the
Figshare database under the accession code https://doi.org/10.6084/
m9.figshare.25234837. The dataset previously used for reference 20
(Ghedini et al.20 Func. Ecol.) is also accessible on Figshare at https://doi.
org/10.26180/16665964. Source data are provided in this paper.

Code availability
All code used in this study is available on Figshare: https://doi.org/10.
6084/m9.figshare.25234837.
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