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Abstract. Adriatic and Ionian seas are Mediterranean sub-
basins linked through the Bimodal Oscillating System mech-
anism responsible for decadal reversals of the Ionian basin-
wide circulation. Altimetric maps showed that the last cy-
clonic mode started in 2011 but unexpectedly in 2012 re-
versed to anticyclonic. We related this “premature” inver-
sion to the extremely strong winter in 2012, which caused
the formation of very dense Adriatic waters, flooding Ionian
flanks in May and inverting the bottom pressure gradient. Us-
ing Lagrangian float measurements, the linear regression be-
tween the sea surface height and three isopycnal depths sug-
gests that the southward deep-layer flow coincided with the
surface northward geostrophic current and the anticyclonic
circulation regime. Density variations at depth in the north-
western Ionian revealed the arrival of Adriatic dense waters
in May and maximum density in September. Comparison be-
tween the sea level height in the northwestern Ionian and in
the basin centre showed that in coincidence with the arrival
of the newly formed Adriatic dense waters the sea level was
lowered in the northwestern flank, inverting the surface pres-
sure gradient. Toward the end of 2012, the density gradient
between the basin flanks and its centre went to zero, coincid-
ing with the weakening of the anticyclonic circulation and
eventually with its return to the cyclonic pattern. Thus, the
premature and transient reversal of Ionian surface circulation
originated from the extremely harsh winter in the Adriatic,
resulting in the formation and spreading of highly dense bot-
tom waters. The present study highlights the remarkable sen-
sitiveness of the Adriatic–Ionian BiOS to climatic forcing.

1 Introduction

The Mediterranean Overturning Circulation (MedOC) is
characterized by a number of processes and features (dense
water formation, eddies, gyres, meanders and filaments) oc-
curring in the world ocean as well (Bethoux et al., 1990) but
having much smaller spatial and often temporal scales (see
the map of the Mediterranean Sea in Fig. 1). Contrary to the
thermohaline circulation (THC) in the world ocean, where
differences in the heat content play a major role, the salinity
contrast between the inflowing Atlantic water (AW) and the
Levantine surface and intermediate waters (Robinson et al.,
2001) drives and largely maintains the Mediterranean basin-
wide thermohaline circulation (MTHC). The high-salinity
waters originating in the Levantine and, in general, in the
eastern Mediterranean (EM) are related to the excess of evap-
oration over precipitation. The MTHC, due to the east–west
climatic differences, is zonally oriented contrary to the THC
which is essentially a meridional flow. In addition, in the
world ocean the entire or a larger part of the water column
is affected by the north/south flows. In contrast, the MTHC
is mainly limited to the surface and intermediate layers due
to two factors: the first one is that the Levantine intermediate
water (LIW) in the EM is not dense enough to sink to larger
depths and thus spreads in the intermediate layer (∼ 300 m);
the second factor is the bathymetry in the Sicily and Gibraltar
straits (with depths < 500 m). Deeper Mediterranean waters
are also involved in the water exchange directly, or via up-
welling and mixing into the intermediate layer. In addition
to the thermohaline circulation, the wind-driven flow rep-
resents an important component of the MedOC. Winds are
highly variable on seasonal and interannual scales as well
as spatially and thus their influence on MedOC is not fully
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Figure 1. Study area.

quantified. Generally, from available wind data, it was shown
that in the northern portion of the Mediterranean Sea the
wind curl is prevalently cyclonic while in its southern part
is anticyclonic imparting positive and negative vorticity to
the oceanic flow, respectively (Pinardi et al., 2013).

In contrast to the world ocean where vertical convection
is an integral part of the Meridional Overturning Circulation
(MOC), in the Mediterranean Sea (MS) the ventilation of the
deep portion of the water column only partially interacts with
the MedOC (Lascaratos et al., 1999). The winter convection
and deep-water formation taking place in the northern parts
of the MS, i.e. in the Gulf of Lion in the western Mediter-
ranean (WM) and in the Adriatic/Aegean in the EM, make
up part of the closed meridional thermally driven circulation
cells. The coupling with the MedOC is achieved via LIW
whose presence in the dense-water formation sites (Gulf of
Lion and Adriatic/Aegean Sea) represents a key ingredient
in facilitating the vertical convection and in determining the
thermohaline properties of the deep water formed. Therefore,
in the MS two types of circulation cells co-exist: the zonal
MTHC, driven mainly by the east–west salinity gradient in-
teracting with two secondary cells controlled by the north–
south temperature gradient, where the driving mechanisms
are the winter air–sea heat losses and vertical convection.

Decadal variability of the MedOC is rather well assessed.
The idea of the Mediterranean circulation being in a steady
state was abandoned when in the early 1990s the eastern
Mediterranean transient (EMT) was discovered. The phe-
nomenon manifested essentially in the Aegean/Cretan Sea
substituting the southern Adriatic as the dense water forma-
tion site (Roether et al., 1996). This abrupt change was at-
tributed in a number of numerical studies to a meteorological
forcing (Beuvier et al., 2010) and to the Levantine circula-
tion changes bringing highly saline waters into the Cretan
Sea. Salinity increase in the Levantine was also explained in
some experimental studies in terms of a blocking of the LIW
outflow through the Cretan Passage (Malanotte-Rizzoli et al.,
1999). Subsequently, deep winter convection and bottom wa-
ter formation in the Cretan Sea took place following severe
winter climatic conditions.

Recently, cyclical occurrences of the high salinity in the
Levantine and the EMT preconditioning have been explained

in terms of the feedback mechanism called the Adriatic–
Ionian bimodal oscillating system (BiOS), i.e. the decadal re-
versals of the Ionian upper-layer basin-wide circulation from
cyclonic to anticyclonic and vice versa (Gačić et al., 2011).
The Mid-Ionian Jet, which brings AW into the Levantine
basin, is reinforced or weakened by the Ionian cyclonic or
anticyclonic circulation, respectively. This then results in a
varying intensity of the AW advection towards the Levan-
tine and consequently in a varying dilution of the Levantine
surface waters. Considering that the LIW is formed in the
Levantine, in the area of Rhodes Gyre, obviously the LIW
salinity will change as a function of the intensity of the Lev-
antine surface water dilution by the AW.

During the Ionian anticyclonic mode the AW flow is
mainly deflected northeastward affecting the northern Ionian
and southern Adriatic. In that situation the flow of the AW to-
wards the Levantine basin is reduced, the Levantine surface
waters become saltier and the same applies to the LIW. The
Ionian anticyclonic circulation mode is thus the precondi-
tioning factor for EMT-like phenomena (Gačić et al., 2011).
Possible occurrence of the EMT would then take place only if
the air–sea heat losses in the Aegean Sea were strong enough
to produce deep convection.

The Adriatic Sea as a dense water formation site is more
prone to winter convection when the Ionian circulation is cy-
clonic, bringing there the salty waters of Levantine origin.
In the opposite circulation pattern, under the influence of the
AW, the vertical stability of the water column in the Adri-
atic hampers the vertical convection. In addition, the wa-
ter formed is of a lower/higher density due to the freshen-
ing/salting of the upper part of the Adriatic water column.
From these considerations, one can explain why the Lev-
antine and Adriatic salinities are out of phase and why the
Aegean and Adriatic were substituting each other as a source
of the eastern Mediterranean deep water (EMDW) as it hap-
pened during the EMT. However, we have to take into con-
sideration that the winter convection in the Adriatic depends
on the interplay between air–sea heat fluxes and the buoy-
ancy and thus winter meteorological conditions can modify
both the efficiency of the Adriatic as a source of the EMDW
and the Adriatic Deep Water (AdDW) density.

From theT –S data of the last 60 years (Gačić et al., 2013)
it is clear that e.g. the salinity minimum in the North Io-
nian, presumably associated with the anticyclonic phase of
North Ionian Gyre (NIG) occurred cyclically on timescales
of between 4 and 11 years. From altimetric data, the occur-
rences of two anticyclonic phases in the Ionian (1987–1997
and 2006–2010) have been identified. In addition, two cy-
clonic phases have been documented, the first one in the pe-
riod 1998–2005, and the second one which started in 2011.
However, in 2012 an unexpected reversal from the cyclonic
to the anticyclonic mode took place. The aim of this study
is to analyse this “premature” inversion of the NIG, trying
to explain it in terms of the extremely severe climatic condi-
tions in the Adriatic during the winter of 2012, thus relating
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it to the spreading of the very cold and dense AdDW formed
during that winter.

2 Data and methods

A fleet of 17 Argo profiling floats is used for this work. They
operated between 2011 and 2012 in the Ionian Sea. They
were deployed in the framework of the Argo programme
in the Mediterranean Sea (MedArgo, see Poulain et al.,
2007). The profilers were equipped with Sea-Bird CTD
(conductivity–temperature–depth) sensors (models SBE
41 or 41CP) with accuracies of±0.002◦C, ±0.005 and
±2.4 dbar for temperature (T ), salinity (S) and pressure
(P ), respectively. The sampling depth, defined as pressure,
was variable: in the upper layer [0, 100 dbar] it is set to
5 dbar; 10 dbar in the layer 100–700 and 50 dbar in the depth
interval 700–2000 dbar including wherever possible the near
bottom values. The Argo floats were programmed with a
cycle length between 2 and 10 days, a drifting depth of 350
or 1000 m and a maximal profiling depth between 1000 and
2000 m. The data were processed and quality controlled
using a basic set of tests at the Argo Data Assembly Centre
(DAC). Prior to the data quality control, some notoriously
spurious values were eliminated. A delayed-mode quality
control of P , T and S data was then applied in accor-
dance to the Argo Quality Control Manual (2013), Version
2.8, 3 January 2013, Argo Data Management (available
at http://www.argodatamgt.org/content/download/15699/
102401/file/argo-quality-control-manual-version2.8.pdf)
and in particular the Owens–Wong method was adopted
(Owens and Wong, 2009) to check theS data. The Argo float
S profiles were also qualitatively compared to a reference
data set (see details in Notarstefano and Poulain, 2008);
this comparison detected no drift of the conductivity sensor
for the majority of the floats. A significant negative offset
(0.0151) in theS data was evidenced only for Argo float
6900952 (Notarstefano and Poulain, 2013), which was later
corrected. After removing the spikes, the potential drifts or
offsets of theT and conductivity sensors were found to be
smaller than the natural variability of the water column and
hence no delayed mode correction was deemed necessary.

The altimetry data used for this study are gridded
(1/8◦ Mercator projection grid) Ssalto/Duacs weekly, multi-
mission, delayed time (quality controlled) products from
AVISO (SSALTO/DUACS users handbook 2014, avail-
able at http://www.aviso.altimetry.fr/fileadmin/documents/
data/tools/hdbk_duacs.pdf). Among the available versions
of the delayed time products we have selected the refer-
ence data series, based on two satellites (Jason-2/Envisat
or Jason-1/Envisat or Topex/Poseidon/ERS) with the same
ground track. These data series were homogeneous all along
the available time span, thanks to a stable sampling. Abso-
lute dynamic topography (ADT) and corresponding abso-
lute geostrophic velocity (AGV) data were downloaded. The

ADT is the sum of sea level anomaly and synthetic mean dy-
namic topography (SMDT), estimated by Rio et al. (2007)
over the 1993–1999 period. The error of the SMDT in the
study area is of the order of 1 cm.

Annual and monthly averages of the ADT and AGV in
the Ionian Sea were estimated over the 2008–2012 period.
The AGV were sub-sampled in non-overlapping bins of
0.25◦ × 0.25◦. Weekly zonal geostrophic components were
spatially averaged in an area of the northern Ionian (see
Fig. 2a and b).

Vertical profiles of horizontal geostrophic currents were
derived at discrete depth levels by vertically integrating the
thermal-wind balance equation. Interpolated (1 m vertical
resolution) vertical profiles of potential density were de-
rived from the availableT –S profiles for the period June–
November 2012. The required horizontal gradients of poten-
tial density were derived by locally fitting horizontal den-
sity planes to each point coinciding with the ADT grid us-
ing density measurements from nearby locations. The 350 m
level, where float-derived velocity field was available, was
chosen as reference level to obtain absolute velocity profiles.
The absolute velocities were then compared with the surface
geostrophic flow.

Heat fluxes were calculated at the air–sea interface ev-
ery 6 h (00:00, 06:00, 12:00, 18:00 UTC) from the European
Centre for Medium Range Weather Forecasts, Reading, UK
(ECMWF) Operational Analysis Data Set using a 0.25◦ inter-
polated latitude/longitude Gaussian grid (Cardin and Gačić,
2003). From the 6-hourly values, instantaneous flux compo-
nents for long-wave (May, 1986), sensible and latent heat
flux (Kondo, 1975) were obtained. These were subsequently
averaged to obtain daily mean values, while the short-wave
radiation was determined as an integral from sunrise to sun-
set, according to Schiano (1996). Adding its value to the
mean of the other three components, the daily net heat flux
was determined at each grid node. More information on for-
mulas applied and coefficients can be found in Cardin and
Gǎcić (2003). Mean area winter heat losses were then calcu-
lated for the period spanning from 1 December to 31 March
using a grid of 157 nodes for the southern Adriatic basin
for three consecutive winters i.e. 2009–2010, 2010–2011 and
2011–2012.

Correlation between the ADT and the depth of the isopy-
cnals 29.00, 29.10 and 29.18 kg m−3 obtained from in
situ CTD casts were computed for the two periods June–
November 2011 and June–November 2012. Correlation co-
efficients were calculated between the 6-month average ADT
values and isopycnal depths at each CTD position.

Due to the paucity of float data for the period June–
November 2011, the float data set were merged with CTD
profiles from the POS414 cruise (R/VPoseidon), carried out
in June 2011 in the eastern Mediterranean (Tanhua et al.,
2013). All profiles from that cruise were sampled using a
CTD equipped with a SBE19plus sensor, with overall ac-
curacies of±0.002◦C, ±0.003 for T and S, respectively.
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Figure 2. Spatial distribution of CTD profiles for 2011 and for 2012. Different colours represent different floats. Red dots in the left panel
indicate the CTD stations referred to the POS414 cruise. Black rectangles denote areas where the average sea level heights were calculated.
The zonal component of the surface geostrophic flow (shown in Fig. 3) was computed for the northern rectangle.

Potential density anomalies (reference pressure equaling
zero) were computed with MATLAB using TEOS-10 ther-
modynamic equations of seawater (http:/www.teos-10.org).

3 Data analysis and discussion

In order to illustrate decadal inversions of the Ionian basin-
wide circulation for the last two decades, we present time
series (Fig. 3) of the zonal component of the surface
geostrophic currents computed for the northern portion of
the Ionian (see Fig. 2a and b for the position of the area
where the average geostrophic currents were calculated). We
present both low-pass monthly time series filtered by the 13-
month moving average and the unfiltered data. From the lat-
ter time series, clear seasonal variability emerged. Positive
zonal geostrophic component (eastward) represents the an-
ticyclonic circulation while the negative one is associated
with the cyclonic Ionian mode. Generally, the zonal compo-
nent of the geostrophic current varies primarily at the decadal
timescale. The seasonal basin-wide circulation reversals oc-
curred only in the transitional phase between the two sub-
sequent decadal circulation patterns like in the late 1990s,
around 2006 and around 2009. From the presented time se-
ries there is evidence suggesting that the BiOS anticyclonic
mode which started in late 1980s was of a longer duration
than the anticyclonic phase starting in 2006. The same is
very likely valid for the cyclonic modes. This could be ex-
plained in terms of the EMT, when much larger quantities
of the Aegean dense waters (about 3 Sv (1 Sv = 106 m3 s−1)
average outflow between mid-1992 and late 1994 accord-
ing to Roether et al., 2007) than the “normal” AdDW vol-
ume (0.3 Sv; Lascaratos, 1993) flooded the Ionian abyssal
area. We will be analysing the mechanism potentially respon-
sible for the 2012 “premature” reversal, documented from
both yearly and monthly altimetric maps (Figs. 4 and 5).
The low-pass zonal geostrophic flow in Fig. 3 shows only
the weakening of the westward flow in 2012 and not the

complete reversal. In fact some inconsistencies in timing of
the flow reversal obtained from altimetric maps and from the
zonal geostrophic flow are mainly due to the fact that the
geostrophic currents are related to the averaging area often
affected also by smaller-scale motions. Altimetric data and
surface geostrophic currents (annual mean maps) from 2008
to 2012 show the second part of the anticyclonic phase in
the late 2000s and the breaking up of the basin-wide anti-
cyclonic meander into several mesoscale cyclonic and an-
ticyclonic features. The complete reversal from the anticy-
clonic to the cyclonic mode took place in 2011 when the
large anticyclonic meander retreated below the 36◦ N lati-
tude (Fig. 4). Subsequently, the “premature” reversal from
the cyclonic to anticyclonic circulation took place in 2012
and manifested as a northward protrusion of the anticyclonic
meander reaching 38◦ N latitude. From the monthly mean al-
timetric maps for 2012 (Fig. 5), we can identify with more
precision the reversal time. It is evident that the reversal
of the NIG from cyclonic to anticyclonic initiated with the
break-up of the sub-basin scale cyclone into two mesoscale
cyclones in May 2012. Between these two cyclones, the es-
tablishing and strengthening of the anticyclonic meander be-
came more and more evident protruding northward. This lat-
ter circulation pattern reached its maximum in the period
August–November.

In December 2012, the anticyclonic meander started to
withdraw leaving again room to the cyclonic circulation and
very likely to an eventual re-establishment of the cyclonic
BiOS phase which is evident in the altimetric maps for Jan-
uary, February and March 2013 (Fig. 5). To a certain extent,
this change of pattern can be associated to intra-annual vari-
ability but as shown, the seasonal signal very rarely can invert
the basin-wide circulation.

We will now try to explain the “premature” Ionian basin-
wide circulation reversal, which occurred in the period May–
November in terms of the resulting effect of the cold and
dense AdDW formed during the extremely cold 2012 winter.
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Figure 3. Zonal component of the surface geostrophic velocity
computed in the area denoted by the northern rectangle (see Fig. 2).
Continuous line represents the time series smoothed by the 13-
month moving average while the dashed line represents unfiltered
data.

According to recent papers (Bensi et al., 2013; Mihanović
et al., 2013; Vilibíc et al., 2013) the winter of 2012 was
very harsh in the northern Adriatic resulting in the forma-
tion of extremely dense bottom water in the shelf area. Den-
sity anomaly recorded in the northernmost end of the Adri-
atic attained 30.59 kg m−3, the value reached only twice in
the last 100 years. Mihanović et al. (2013) showed that the
average annual transport of the northern Adriatic dense wa-
ter reached a value that was approximately half the average
dense water formation rate in the southern Adriatic. There-
fore, a contribution of the northern Adriatic dense water to
the total volume of the AdDW was probably much larger
than about 10 % as estimated by Vilibić and Orlíc (2002).
Apart from the effect of the northern Adriatic dense wa-
ter on the outflowing AdDW, the heat fluxes in the open-
ocean convection area in the southern Adriatic were also very
strong. More precisely, the comparison of the surface heat
losses between three consecutive (2010, 2011 and 2012) win-
ters (December–March period) for the southern Adriatic con-
firmed that they were strongest in winter 2012. Six episodes
with the surface heat losses stronger than 400 W m−2 oc-
curred in January–February of 2012, while in other two
years such episodes were practically absent or less frequent
(Fig. 6). Subsequently, cold and very dense water formed lo-
cally in the southern Adriatic with an important contribution
of the northern Adriatic dense water spread southward along
the western flank of the Ionian. It generated the pressure gra-
dient force oriented from the coast toward the open sea, and
consequently the deeper-layer southward geostrophic flow.
Due to the presence of the dense water along the western
Ionian flank, the sea level along borders became lower than
in the centre. Therefore, the southward motion of the colder
and denser Adriatic water along the western Ionian flanks
generated the northward surface geostrophic flow. This is

Figure 4.Mean annual maps of the sea surface height for the period
2008–2012.

a qualitative explanation of the “premature” reversal of the
NIG associated with the spreading of the very cold and dense
Adriatic waters.

In order to compare the sea level structure and the isopy-
cnal depth, we calculated the linear correlation between the
altimetric data and the isopycnal depths for 2011 and 2012
(Fig. 7). If such a relation exists, it would mean that the Io-
nian behaved as a two-layer basin, i.e. that the upper-layer cy-
clonic or anticyclonic flow was in the opposite direction with
respect to a deep layer circulation as hypothesized earlier in
this paper. In other words, this would suggest that the sur-
face geostrophic circulation was related to the deeper layer
flow and that the sea level pattern was representative of the
horizontal distribution of isopycnal depths. We have chosen
29.00, 29.10 and 29.18 kg m−3 isopycnal depths for the com-
parison with the sea surface height. The average depth of the
29.00 kg m−3 isopycnal was about 200 m; the 29.10 kg m−3

isopycnal corresponds to the LIW and occupied depths of
around 300 m. The 29.18 kg m−3 isopycnal can be consid-
ered as the lower limit of the AdDW density in the Ionian lo-
cated around 1100 m depth. We have compared semi-annual
mean sea level data (June–November) with the isopycnal
depth at a given point obtained from the floats. We have cho-
sen the 6-month period when rather homogeneous float data
coverage was present in both 2011 and 2012. In addition, we
expect that in the chosen period June–November the newly
formed AdDW very likely reached the Ionian. Considering
all the float data within the 6-month period, we hypothesized
small intra-annual variations in the density field. This was a
reasonable assumption for the portion of the water column
below the seasonal pycnocline. However, some noise over
the entire depth range may derive from the mesoscale vari-
ability affecting float trajectories. In 2012, the regression was
close to linear for the first two isopycnals with the decreas-
ing values of the correlation coefficient with depth. On the
other hand, the data points in the sea level−29.18 kg m−3

isopycnal diagram were highly dispersed. During 2011 the

www.ocean-sci.net/10/513/2014/ Ocean Sci., 10, 513–522, 2014
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Figure 5. Mean monthly altimetric maps for the period January 2012–June 2013.

Figure 6. Daily values of the surface air–sea heat losses in South
Adriatic for three consecutive winters (2010 – black line, 2011 –
blue line and 2012 – red line).

float data coverage in the Ionian was poorer than in 2012
(Fig. 2) and thus we combined data from the oceanographic
campaign carried out in June by R/VPoseidonand the float
data. In the upper part of the water column (isopycnals 29.00
and 29.10 kg m−3) there were no important differences be-
tween 2011 and 2012 in the relationship between the isopy-
cnal depth and the free surface; both years showed a statisti-
cally significant linear correlation. The 29.18 kg m−3 isopyc-
nal depth showed higher correlation with the free surface for
2011 than for 2012. This difference can be explained by the
fact that the spreading of the very dense AdDW in 2012 intro-
duced spatial heterogeneity in the density field in the deeper
part of the water column, which then resulted in the lower
correlation between the free surface and the 29.18 kg m−3
isopycnal depth. In fact, as we will show later, a current re-
versal took place somewhere below the 750 m depth proba-
bly close to the depth of 29.18 kg m−3 and this could explain
the weak correlation between the free surface and the 29.18
isopycnal. The statistically significant correlation confirmed

the interdependence of the surface and deeper layer circula-
tion showing that from the surface geostrophic current pat-
tern it is possible to reconstruct the deeper layer flow. In
the specific case of 2012, the massive inflow of the dense
AdDW generated the reversal of the Ionian surface circula-
tion which, as shown from the linear regression between the
sea surface height and isopycnal depth, was concomitant with
the deeper layer circulation inversion. It is also important to
stress that data points, independently of different floats and
their positions were scattered along the same straight line.

Next, we analyse in more detail the temporal variations of
the water density from the float measurements. We looked
for evidence on the evolution of the horizontal density gra-
dient in the deeper portion of the water column between the
centre of the Ionian and its flanks, which resulted in a rever-
sal of the surface pressure gradients and of the geostrophic
flow. We will estimate the timing of the change of the hor-
izontal density gradient due to the spreading of the highly
dense AdDW and compare it with the sea level gradient re-
versal. The series of profiles (Fig. 8a) revealed the density in-
crease in the northwestern Ionian starting in June and related
to the arrival of the newly formed AdDW. Thus, we should
expect that the reversal of the density and surface pressure
gradients first took place in that area. The temporal evolu-
tion of the average density in the deep portion of the profile
(1000–1200 m layer) obtained from floats in the centre of the
basin was compared with the density variations along the Io-
nian western flanks. For that purpose, we used data from two
floats, which were mainly moving near the flanks – one in the
northern part just downstream of the Strait of Otranto and
the other one further southward along the Calabrian coast
(Fig. 9a). Then the density data were compared with those
in the centre of the basin obtained from one float whose mo-
tion was mainly limited to the central area of the Ionian Sea,
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Figure 7. Scatter plots of isopycnal depths versus sea surface height for the years 2011 (upper panels) and 2012 (lower panels), for density
anomaly values 29.0(a andd), 29.1(b ande) and 29.18 kg m−3 (c andf). Colours of data points refer to different floats and cruise, as in
Fig. 2.

Figure 8. Vertical density profiles from floats(a) in the northwest-
ern Ionian area (the time of sampling is denoted next to the curve).
Sampling locations are indicated on the map(b).

representative of the density variations in the basin interior.
The prominent density increase in the northwestern Ionian
occurred from May through September reaching its maxi-
mum in August, a period when high-density AdDW reached
the area as revealed from the density profiles (Fig. 8a). The
density in the centre of the basin remained unaltered, hence
during the AdDW spreading period a building up of a den-
sity gradient between the basin flank and its centre was taking
place. Subsequently, the signal of the relatively high density
reached the Calabrian coast around November (Fig. 9b), with
an average speed of about 5 cm s−1. It was rather weak prob-
ably because we compared the average density in the layer
1000–1200 m for all three sets of data. At the beginning of
its spreading in the Ionian, the AdDW occupied mainly the
layer around the 1000 m depth and thus the signal was very
strong. This was particularly evident from the density profiles
at the float positions indicated by the triangle and the cross in
Fig. 8, which were located on the seaward side of the 1000 m
isobath. The dense water vein deepened by about 300 m in
the 10-day interval of 29 July to 9 August. Due to its further
deepening downstream, the AdDW was not so evident in the
layer between 1000 and 1200 m.

We compare the evolution of the sea level differences (be-
tween the northwestern area centred at the location where the
AdDW signal in the density field was strongly present, as ev-
idenced from the float profiles in Fig. 8a, and the centre of the
basin) and the average density variations (Fig. 9). This com-
parison was done in order to reveal whether the sea level gra-
dient and the surface geostrophic circulation reversals were
concomitant with the density increase due to the arrival of
the dense Adriatic waters. We considered the sea level dif-
ferences between the northern part of the Ionian and its cen-
tre instead of geostrophic currents to minimize the seasonal
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Figure 9. (a) Float sampling locations within the three selected
zones and(b) the time series of the mean density within the
depth interval 1000–1200 m, averaged over all the available pro-
files within each zone. The colour of curves corresponds to the
selected zones. The sea level differences (weekly data, thin grey
line, low-passed data thick grey line) in(b) are computed between
the two rectangles (northern rectangle minus the southern one, see
Fig. 2 for their positions).The low-pass procedure consisted of a
zero-phase forward and backward digital infinite impulse response
filtering. A nine-point symmetric Hanning window has been chosen
as a weighting function.

variability due to heating and cooling. On the other hand, the
noise related to the presence of mesoscale eddies was very
pronounced. Thus, we apply a low-pass filter to the time se-
ries of the weekly sea level differences. The low-pass curve
of the sea level differences showed clearly the lowering of
the sea level in the northern area with respect to the cen-
tral zone of the Ionian basin, related to the increase of the
1000–1200 m average density starting in May 2012. The sea
level differences remained negative i.e. the sea level along
the basin boundaries remained lower than in the centre until
the beginning of 2013, although the vertically averaged den-
sity after September reached the same values as those at the

open sea. This can be explained by the fact that the float in
September left the area affected by the AdDW (see Fig. 9a)
and thus reached the zone having densities rather close to
those of the centre of the Ionian.

Further, with the view to investigate the vertical flow struc-
ture and obtain the boundary between the upper and lower
layer, we estimated the absolute current field. We computed
the geostrophic shear from the float density field and added
it to the measured Lagrangian velocity at the 350 m parking
depth of the ARGO floats. Although floats were programmed
to reach the maximum depth of 1000 or 2000 m we recon-
structed the absolute velocity profile from the surface to the
750 m depth (Fig. 10) in order to maximize the spatial cov-
erage of the Ionian. Large discrepancies at some locations
between the surface geostrophic flow calculated from the al-
timetric data and absolute currents at the sea surface obtained
from floats can be explained in terms of the large interval
we chose for the data analysis (June–November) when sea-
sonal variability in the surface layer is rather important. From
Fig. 10 it is evident that the entire water column from the sur-
face to the 750 m behaved mainly as a single layer, meaning
that the inversion took place below that depth. Only at one
location, which was positioned in the northwestern part of
the basin and probably invaded by the AdDW, was the two-
layer structure evident, with the velocity at 750 m being in
the opposite direction with respect to the surface one. Due
to the scarcity of data, their uneven spatial distribution and
the method for the horizontal density gradient calculations,
we were not able to cover in a more detailed manner the area
in the close vicinity of the coast where we could expect in-
creased horizontal density gradients and large values of the
vertical shear caused by the presence of the AdDW. Another
feature arising from the geostrophic shear calculations is that
mesoscale structures (like e.g. large anticyclonic gyre in the
centre of the Ionian) at the open sea were rather deep, ex-
tending from the surface down to at least 750 m depth.

4 Conclusions

Here we have documented from altimeter data that the NIG
circulation, as a part of the BiOS decadal variability, passed
from the anticyclonic circulation to the basin-wide cyclonic
mode in 2011. In 2012, however, unexpectedly the NIG
became anticyclonic interrupting the most recent cyclonic
BiOS phase. We have shown that the winter of 2012 in the
southern Adriatic was extremely severe, as already evidenced
in the literature for its northern part, and we looked for a
possible link between strong air–sea heat losses and the Io-
nian circulation inversion. We set up the hypothesis that ex-
treme winter air–sea heat losses in both the northern and
southern Adriatic resulted in the formation of the cold and
highly dense Adriatic bottom waters, spreading into the Io-
nian, which inverted the bottom pressure gradient and gen-
erated the NIG reversal. We showed first that the sea level
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Figure 10.Absolute velocities calculated from the geostrophic shear using the 350 m Lagrangian measurements as a reference velocity.

anomalies were linearly related to the depth of the three cho-
sen isopycnals (29.0, 29.10, 29.18 kg m−3) which confirmed
that the Ionian behaved as a two-layer fluid. Yet, from the
vertical geostrophic shear and the absolute geostrophic ve-
locity we were not able to determine the basin-wide distribu-
tion of the no-motion level because the float profiles often do
not reach the maximum nominal sampling depth (2000 m).
There were, however, indications that near the northwestern
flank the no-motion level or the boundary between the upper
and lower layers was situated at depth shallower than 750 m.
Analysis of the profiling float data also revealed evidence
of the temporal evolution of the spreading of the extremely
dense Adriatic waters along the northwestern Ionian flanks,
showing that it started in May 2012 and affected the density
field until September. This was also the period of the major
horizontal density gradient between the basin interior where
the density did not change, and its western flanks. Computa-
tions of the sea surface differences between the north Ionian
flank and the basin interior, and implicitly the geostrophic
velocity, confirmed that in concomitance with the arrival of
the Adriatic dense waters, the seaward sea surface pressure
gradient was set up. With the decrease of the horizontal
deep density gradients towards the end of 2012 the surface
geostrophic flow, as part of the anticyclonic NIG, weakened.
Finally, we documented from altimetric data that the NIG
circulation returned to a cyclonic one at the beginning of the
2013.

In summary, here we evidenced that the BiOS mechanism
is highly sensitive to the climatic conditions, more specifi-
cally to the air–sea heat fluxes in the Adriatic dense water
formation areas, which can affect its cycle. In fact, we have
presented here supporting elements to the thesis raised by
Mihanovíc et al. (2013), that future climate variability will
have an important effect in changing the BiOS temporal scale
if an increase of cold air outbreaks in the 21st century takes
place as predicted. This study also implicitly confirmed that
the NIG reversal can be explained solely in terms of the vari-
ations of thermohaline properties of the AdDW.
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