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S U M M A R Y
To calculate phase-velocity dispersion curves, we introduce a method which reflects both struc-
tural and dynamic effects of wave propagation and interference. Rayleigh-wave fundamental-
mode surface waves from the South Atlantic Ocean earthquake of 19 August 2016, M = 7.4,
observed at the AlpArray network in Europe are strongly influenced by the upper-mantle low-
velocity zone under the Cameroon Volcanic Line in Central Africa. Predicting phase-delay
times affected by diffraction from this heterogeneity for each station gives phase velocities
as they would be determined using the classical two-station method as well as the advanced
array-beamforming method. Synthetics from these two methods are thus compared with mea-
surements. We show how the dynamic phase velocity differs from the structural phase velocity,
how these differences evolve in space and how two-station and array measurements are affected.
In principle, arrays are affected with the same uncertainty as the two-station measurements.
The dynamic effects can be several times larger than the error caused by the unknown arrival
angle in case of the two-station method. The non-planarity of the waves and its relation to the
arrival angle and dynamic phase-velocity deviations is discussed. Our study is complemented
by extensive review of literature related to the surface wave phase-velocity measurement of
the last 120 years.

Key words: Structure of the Earth; Surface waves and free oscillations; Wave propagation;
Wave scattering and diffraction.

1 I N T RO D U C T I O N

Much (if not most) of our knowledge about the Earth`s uppermost
mantle comes from analysing seismic surface waves, through the
study of frequency-dependent (group or phase) velocities, the so-
called ‘dispersion curves’. In certain cases, like for the oceanic
lithosphere (e.g. James et al. 2014), the phase-velocity dispersion
curve of Rayleigh waves can have a local minimum. Indeed, theory
predicts that dispersion curves must always be smooth, with veloc-
ity generally increasing with period, and having at most a single
minimum spanning a broad range from 30 to 70 s. From now on, we
will call these expected smooth and monotonic dispersion curves as
‘simple curves’. Observations are somewhat in contrast with simple
curves predicted by theory though. Using either tripartite (Evernden
1954) or two-station method (Brune & Dorman 1963), the measured
dispersion curves show non-random deviations. Pilant & Knopoff
(1964) already noted that if two or more wave trains interfere, not
only the amplitude shows beats, but also the phases are affected by
‘fluctuations’. Knopoff et al. (1966) noted that these phase irregu-
larities made it almost impossible to determine Earth structure from
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the observation. In the Appendix, we give an extensive overview of
the papers dealing with surface wave measurements. Problems with
determining accurate phase velocities were experienced already in
the advent of dispersion-curve studies. All the authors recognized
that the undulated measurements could not be explained by struc-
tural models. Some of the authors already excluded the measure-
ment errors as a cause. From now on, we will denote these observed
oscillations (scatter, fluctuations, irregularities, disturbances, undu-
lations, perturbations, changes in derivative) as dispersion curve
wobbles. More precisely, a wobbled dispersion curve is not follow-
ing the trend of a simple curve and the wobbles can be attributed
neither to the structure nor to measurement errors.

Wobbles have usually their maxima and minima separated by 10–
20 s in the period range from 5 to 200 s. There has been suspicion
early-on that such increases and decreases of phase velocity can
hardly be explained by structural models, for example from the sen-
sitivities calculated by Brune & Dorman (1963), Fig. 14; Novotný
(1970), Figs 1–10 and Novotný et al. (2005), Fig. 2. Sensitivities
are plotted as partial derivatives of phase velocity with respect to
shear-wave velocity (P-wave velocity, density) for each depth sep-
arately over the period range. It shows that every layer influences
a very broad range of periods. It is impossible to construct a layer
with parameters influencing only a narrow period band to cause
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increase/decrease of phase velocity in only this band. Also note that
nowadays these sensitivities are usually plotted in a different way
(Smith et al. 2004; Lebedev et al. 2013): each line represents sen-
sitivity for a given period depending on depth (while before each
line represented sensitivity for given depth over the period range).
The contemporary way of representing the sensitivities shows the
same: for each period, the sensitivity is non-zero over such a broad
range of depths that we cannot construct a layer which would de-
crease (increase) the velocity in a small range (∼10–20 s) of pe-
riods. Wobbled dispersion curves are also unlikely to be associ-
ated with any particular measurement method. For details, see the
Appendix.

Many papers show phase-velocity dispersion curves, which are
smooth and simple (monotonic, no wobbles). There are three rea-
sons for the curves to be simple. (i) Phase-velocity dispersion curves
calculated from a structural model are always simple (see the Ap-
pendix for examples of the large number of references that show
such theoretical dispersion curves). (ii) There are measured curves
which look quite simple, especially for long propagation paths of
thousands of kilometres (see Kolı́nský et al. (2011) for shorter paths
on the other hand). (iii) The last category of simple dispersion curves
relates again to curves, which are ‘observed’, however, these are dis-
persion curves representing not a single pure-path measurement, as
above, but rather a region or locality. Such dispersion curves can
be obtained by averaging or merging the pure-path curves, like
in Baumont et al. (2002). Generally, such regionalized curves are
found in all tomographic studies (see the Appendix), where the
phase-velocity maps are used to compile ‘local’ dispersion curves
characterizing the structure at the given node of the tomography
grid.

Since the first observations, seismologists have tried to present an
explanation for the discrepancy between simple modelled and wob-
bled observed curves. Brune & Dorman (1963) attributed the scatter
to the interference of Sa and Sn waves with the fundamental modes
of surface waves. Pilant & Knopoff (1964) described fluctuations
based on interference from multiple events and signals arriving over
multiple paths. Knopoff & Mal (1967) showed how the back reflec-
tion from inclined Moho produces phase shifts. They successfully
modelled a wobbled dispersion. Thatcher & Brune (1969) discussed
the mode interference as a possible cause of anomalous apparent
phase velocities of Love waves. Since then, the possible explana-
tions repeat regularly in other papers, see the Appendix. Detailed
investigation was given by Weidner (1972, 1974): the observed
wobbles are attributed to interference caused by mutually delayed
parts of the fundamental mode of Rayleigh waves scattered from
the Mid Atlantic Ridge. This explanation is very close to what we
suggest.

Together with the attempts of explanation, researchers tried to
remove the wobbles. Noponen (1966) used smoothing of the phase-
velocity wobbles and Dean (1986) suggested simultaneous smooth-
ing of phase and group curves. Other attempts include averaging
of individual measurement from the two-station method (e.g. Dar-
byshire et al. 2004), two-plane wave fit to the observed wavefield
(Forsyth & Li 2005) and selection of only the smooth portions of
dispersion curves (Polat et al. 2012; Soomro et al. 2016). One aspect
to note here is that all these methods of removing the wobbles are
independent of the cause of the wobbles - averaging and smooth-
ing removes the wobbles without asking, why they are there. Even
though the two-plane wave approach is capable to fit the complex
wavefield better than a single-plane wave, it still does not explain,
why the wavefield is so complex.

It has been repeatedly assumed that array techniques (beamform-
ing) are capable of determining the phase velocity better than the
two-station method because they simultaneously search for both
the magnitude of the velocity as well as its direction, see Widmer-
Schnidrig & Laske (2007) and references therein. It is true that
knowing the arrival angle of incoming waves removes the bias
caused by unknown direction of propagation as in the case of
the two-station method. However, significant wobbles remain in
the array-based dispersion curves (Kolı́nský et al. 2014 and ref-
erences in the Appendix) showing that the non-plane wavefield
causes significantly more serious problem than the unknown ar-
rival angle. Although the effects of incoming wavefield can be
partially suppressed by averaging over many measurements from
earthquakes in different backazimuths similarly like in the case of
the two-station method, still array-based phase velocities are in prin-
ciple affected by the non-structural wobbles. Barros et al. (2008)
showed that smaller arrays produce higher wobbles than bigger
arrays. We will later see that this effect corresponds to the two-
station method also yielding higher wobbles on shorter interstation
paths.

We will show two-station and array phase-velocity measurements
in our paper. Thanks to the large AlpArray project, we will show
how the results vary in space observing surface waves propagating
from a single earthquake, rather than how the results differ while
observing various earthquakes at one locality as done by most of
the referenced studies. This will allow us to generalize some of
the previous conclusions and to propose a model, which explains
the dispersion-curve wobbles obtained both from the two-station
method as well as from the array beamforming. We will model
the wave propagation yielding synthetic dispersion curves for both
methods. The comparison of our observation and modelling pre-
serves the dispersion-curve complexity for various lengths of the
two-station profiles, for various positions of profiles and arrays in
different distances from the earthquake source as well as it explains
the variation in space laterally to the wave propagation direction.
We will not only give a general explanation of possible causes of
the wobbles, but we will locate the cause and predict the wobbles.
This may lead to a qualitatively new method of removing the bias in
the phase-velocity measurement, which is based on the knowledge
of the cause of the bias (that is not the focus of this paper though).

The modelling is based on the conclusions drawn by Kolı́nský
et al. (2020), referenced as ‘KSB2020’ from now on. We have
shown therein that when propagating from the South Atlantic Ocean
to Europe, the wavefield is diffracted from a distant heterogeneity
so that the arrival angles differ significantly from the great circle
paths. Moreover, the arrival angles form a stripe-like pattern, which
is connected to the wavefield and not the local structure, as shown
by Kolı́nský & Bokelmann (2019) (referenced as ‘KB2019’ from
now on), where similar patterns were observed for 20 earthquakes
from different azimuths. These arrival angles are directly connected
to similar stripe-like pattern of phase-time delays. In our paper, we
will show, how these stripes of alternating positive and negative
phase-time delays translate into the wobbles of dispersion curves.

The left-hand side of Fig. 1 shows a reprint of Fig. 4 from
Noponen (1966), who studied propagation of surface waves from
earthquakes in Greece through the Baltic Shield by the two-station
method. In the right-hand panel of Fig. 1, his NUR-OUL profile
(black line) for event 1 is redrawn together with a profile of similar
length using the current AlpArray stations (blue line). In addition,
the red line shows a modelled wobbled dispersion curve using the
technique proposed in our paper.
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Figure 1. Examples of wobbled phase-velocity dispersion curves. Left-hand panel: reprint of Fig. 4 from Noponen (1966) showing two-station NUR-OUL
profile of 512.94 km length crossing the Baltic Shield, using Rayleigh waves propagating from three earthquakes in Greece. Right-hand panel: the dispersion
curve from Noponen (1966) for the event 1 is shown by black line. Blue line shows a two-station measurement using the profile PCP—GRC2 (527.27 km)
crossing the Alps, for Rayleigh waves propagating from the earthquake in the South Atlantic Ocean. Red curve shows the synthetic modelled dispersion for
the same profile using the Cameroon Volcanic Line model from KSB2020. The axes of both panels have the same scale.

2 M E A S U R E M E N T

2.1 Two-station method

The dispersion-curve measurement between two stations is based
on the technique developed and described by Kolı́nský et al. (2011).
First, the fundamental mode is isolated using multiple-filtering (usu-
ally around 100 filters) in the frequency domain and tapering in
the time domain (Kolı́nský & Brokešová 2007). Envelope maxima
(group velocity) are picked starting from the longest waves proceed-
ing continuously to shorter waves. We are able to pick the funda-
mental mode wavegroup even for periods, where other wavegroups
have larger amplitudes. This allows us to exploit a broad period
range of surface waves. Fundamental mode wavegroup is tapered
using a time window of a 4-period length. Filtering and tapering is
the same for all records. As a result, we have a set of quasi-harmonic
signals filtered in the frequency-time domain for each station, see
Fig. 4 in Kolı́nský et al. (2011) and Fig. 2 in KB2019.

The phase-velocity measurement is then accomplished in the
time domain. Filtered and tapered quasi-harmonic signals of the
same period recorded by two stations are cross-correlated. Times
of the cross-correlation function maxima give us a set of possible
dispersion curves differing by generally unknown number of cycles
between the stations. Because the station distances are only up
to several wavelengths of the longest waves, the proper dispersion
branch is selected using an approximate guess of the phase velocities
for the waves around the period of 100 s. Other branches have
unreasonably high or low velocities. Following again the continuous
branch towards shorter periods, we can select the proper branch for
the short periods as well.

2.2 Array beamforming

Array processing follows the procedure developed in Kolı́nský et al.
(2014) and later used by KB2019. The data handling is basically
the same as for the two-station method. We use exactly the same
sets of filtered and tapered fundamental mode wavegroups as in the
case of the two-station method. The only difference is that we now
cross-correlate not the pairs of quasi-monochromatic signals for
two stations along a profile, but rather neighboring stations grouped

around a central station. Such a group of stations forms a subarray,
in our case of a diameter of 160 km. We obtain a time delay for each
neighbouring station with respect to the central one. Having the ge-
ometry and time delays, the slowness vector is determined by linear
regression assuming a plane wave propagation across the subarray.
There is no issue with unknown number of wave cycles because the
aperture of the array is small compared to the wavelength and only
one of the dispersion branches gives phase velocity in the expected
range.

Every station of the network can turn into a central station of such
a subarray. We look for neighboring stations in the range of distances
from 20 to 80 km from the central station, and if there are at least
five such neighbouring stations, the phase-velocity beamforming is
provided. The average number of stations in a subarray is 13.1 for
the selected earthquake (see the next Section 3 - Data and also Tab.
1 in KB2019). The latter paper also gives details about the data
quality assessment, time-residual analysis for each subarray and
each period and other details. The records of the selected earthquake
have been already processed in KB2019 and KSB2020. Here, we
follow exactly the same procedure, just the period range is broader
now.

3 DATA

To demonstrate the surface wave dispersion measurements, we se-
lected a shallow (10 km) earthquake, which occurred under the
Southern Atlantic Ocean on 19 August 2016. Its magnitude was
M = 7.4. It is one of the 20 earthquakes investigated by KB2019,
see Tab. 1 and Fig. 11 therein and one of the two used to reveal the
structure of the Cameroon Volcanic Line (CVL) used in KSB2020.
Records of the vertical component of the AlpArray broadband seis-
mic network (Fuchs et al. 2015, 2016; Hetényi et al. 2018) are used
together with permanent seismic stations in Europe, see yellow tri-
angles in Fig. 2 framed by the magenta line. The region includes
both the Alpine area as well as the Apennine Peninsula. After careful
manual data quality check, we further removed three stations with
respect to what has been used by KB2019 and KSB2020 keeping
534 stations in total for the processing. Out of these, 499 stations
were used as central stations of local subarrays (compare it with
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502 subarrays in the latter papers). The distance of the earthquake
epicentre to the centre of the AlpArray region is approximately
12 000 km. Rayleigh waves propagating from this earthquake to
Europe show significant stripe-like pattern caused by the diffrac-
tion after passing the low-velocity region under the CVL in Central
Africa (KSB2020) and the magnitude is big enough to yield high
signal-to-noise ratio across the whole AlpArray network over a
broad period range from 15 to 180 s. In our current paper, we show
a reprocessed array-based arrival-angle measurements similar to
KB2019 and KSB2020 as well as new two-station measurements
prepared solely for the purpose of this paper. Note that the period
range used in our current paper is much broader than what has been
used both by KB2019 and KSB2020.

4 M O D E L L I N G

The goal of the modelling is to calculate phase-velocity dispersion
curves, which take into account the wave interference of diffracted
waves after passing a distant small-scale scatterer. The approach we
propose differs significantly from calculating dispersion curves in
a given structural model taking into account only the structure. We,
in addition, consider also the finite-frequency wave-propagation
effects, which allow us to model dynamic phase-velocity dispersion
curves. We are then able to show, how much this dynamic phase
velocity differs from the structural phase velocity, which would be
the one if only the structural model is considered (Wielandt 1993).

We follow the procedure suggested by KB2019 and used by
KSB2020, based on the theory of Nolet & Dahlen (2000). We use
Gaussian beams to predict the phase-time delay τ of surface waves
perturbed by a velocity anomaly. The anomaly placed in a homoge-
neous space produces Gaussian-shaped initial time delay (as defined
by Nolet & Dahlen 2000). The anomaly and the homogeneous space
around it represent a 2-D model. This 2-D model is different for
each period T. The velocity of the medium around the anomaly as
well as the properties of the anomaly, vary with period T (and hence
with depth) allowing us to consider a 3-D structural model of the
medium. The wavefield is calculated for the region after passing
the anomaly, where the medium is purely 1-D. Properties of the
perturbed wavefield at selected period are given by three parame-
ters: the half-width of the anomaly L(T) (the anomaly is represented
by a box-car in our approach, with a half-width equal to the half-
width of the Gaussian-shaped initial time delay), the initial time
delay τmax(T) of the wave right after passing the anomaly and the
phase velocity c(T) of the surrounding medium. Having these three
parameters set, we can predict the phase-time delays τ (x,R,T) (and
arrival-angle deviations) for any point (x,R) after the anomaly. The
meaning of x and R follows the notation given by Nolet & Dahlen
(2000) and it is the same as used in KB2019 and KSB2020. The
map projection in Fig. 3 keeps the great circle paths parallel to each
other (green and orange lines are the same as in Fig. 2). Distance
x is measured from the anomaly along the great circles from the
epicentre. Lines of constant x are hence following the great circle
wavefronts, and they are represented as straight red lines plotted for
every 1000 km from the anomaly. Distance R is the lateral distance
measured perpendicularly to x shown by brown lines also for every
1000 km to both sides from the orange axis of symmetry (R = 0)
of the diffraction pattern. Note that while the red lines of constant
x follow the great circle wavefronts, the brown lines of constant R
do not follow the great circle paths as the mutual distance between
any two great circle paths varies, while the distance between the
brown lines is constant. The phase-time delays are calculated for

any period T as

τ (x, R, T ) = T

2π
arctan

[
Im(1 + Q)

Re(1 + Q)

]
, (1)

where

Q = ei 2π
T τmax(T ) − 1√
i xcglb(T )T

π L2(T )
+ 1

· exp

⎡
⎢⎣−

(
R/

L(T )

)2

1 + i xcglb(T )T

π L2(T )

⎤
⎥⎦ . (2)

The equations for calculating the phase-time delay are rewritten
from Eqs 2 and 3 in KB2019 with only substituting for λ = cT
and ω = 2π /T (see also Eqs 2 and 3 in KSB2020). We set L(T),
τmax(T) and cglb(T), we decide for a point (x,R) and we directly
get the phase-time delay at this point for given period T in a 1-D
medium with cglb(T). To obtain the arrival-angle deviations, we use
Eq. 4 from KB2019 (also Eq. 1 in KSB2020). It gives the arrival-
angle deviation A(x,R,T) as a lateral derivative (along R-axis) of the
phase-time delay τ (x,R,T) as

A(x, R, T ) = arctan

[
cloc(T )

dτ (x, R, T )

dR

]
. (3)

There is a small difference in notation of the phase velocity c
(cglb and cloc) with respect to the same equations in KB2019 and
KSB2020. This will be discussed later. This modelling was used
by KSB2020 for revealing the anomaly, which causes the stripe-
like interference pattern for Rayleigh waves propagating from two
South Atlantic Ocean earthquakes across Central Africa to Europe.
This low-velocity anomaly was identified as the Cameroon Volcanic
Line placed partially beneath the continent and partially beneath the
ocean.

For the purposes of forward modelling in our current study, we
directly use the parameters of the anomaly determined by KSB2020.
The anomaly head is at the location 10.5◦N/15.0◦E, see Fig. 2, map
on the left-hand side. Green line represents great circle connect-
ing the epicentre of the M = 7.4 earthquake and the centre of the
AlpArray region. Orange line is the great circle connecting the epi-
centre and the anomaly head representing the symmetry axis of the
diffraction pattern. Modelled arrival-angle deviations caused by the
anomaly at this location with parameters obtained by the inversion in
KSB2020 for 100 s surface wave [full width 2×L(100 s) = 350 km;
τmax(100 s) = 66 s; c(100 s)= 4.08 km s–1] are shown by transparent
colour pattern over the map in Fig. 2. The results for 2×L(T) and
τmax(T) of KSB2020 are replotted in the right-hand side of Fig. 2
(black lines representing the 13 possible anomaly locations and blue
line representing the final best-fitting spot).

For the purposes of the current study, we extended the model of
the anomaly for the period range 10–200 s, while KSB2020 gave
the results only for the range 50–120 s. The extrapolation of the
results both to shorter and longer periods is given by magenta dots
for both 2×L(T) and τmax(T) in Fig. 2. Every single dot represents
a period for which we provide the modelling. In the range from 10
to 200 s, we set 121 discrete periods with geometrically increasing
steps between them to resemble the dispersion-curve measurement
using the multiple-filtering technique. Setting the time delay of the
anomaly to τmax = 1 s for periods shorter than T = 36 s means
that the anomaly is effectively non-existent for shorter waves. Nar-
rowing the anomaly for longer periods effectively diminishes the
effect of the scattering even though we keep the same time delay of
τmax = 80 s for waves above T = 114 s. For the surrounding medium,
we use the phase velocity calculated for the PREM (Dziewonski &
Anderson 1981). For the details, see KSB2020. Note that this extrap-
olation is used here solely for the purposes of the forward modelling
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Figure 2. Overview of the model. Left-hand map: epicentre location as well as 534 stations used in this study are shown. Final location of the Cameroon
Volcanic Line anomaly head from KSB2020 is depicted by red circle. Arrival-angle deviation pattern predicted by the modelling is shown for 100 s surface
wave. Great circle between epicentre and the centre of the AlpArray region (green) as well as great circle corresponding to the axis of symmetry of the pattern
(orange) are drawn. Right-hand panels: Widths and initial time delays obtained by the inversion for 13 possible anomaly head locations (thin black lines) and
for the final location (blue) from KSB2020. Magenta dots represent the values extrapolated for the modelling in the current study (121 discrete periods).

of the synthetic dynamic phase-velocity dispersion curves, and in
no case it should propose any additional structural features under
the Cameroon Volcanic Line. Also note that the only heterogene-
ity in our structural model takes place under the CVL exclusively.
Everywhere else, the structure is only 1-D (PREM). Meaning, also
under the AlpArray network, the structural model is solely 1-D. As
discussed already in KSB2020 (see section 6.1 therein), in reality,
the CVL is not the only heterogeneity on the way from the South
Atlantic Ocean to Europe. Measurement at shorter periods show
clear stripes of arrival-angle deviations pointing in another direc-
tion, see Fig. 3 in KSB2020. The goal of our study is to show, how
a single anomaly affects the dispersion curve measurement. We do
not intend to explain all the peculiarities observed in the data. The
CVL was identified as by far the strongest anomaly on the way and
this is why we use it to demonstrate the principle of how the wobbles
affect the dispersion curves.

We use the modelling in three ways:

(i) Fine maps. Phase-time delays and arrival-angle deviations
are modelled at a very fine grid of locations (x,R) in a global scale
(0.1◦ × 0.1◦ ). This allows us to plot smooth diffraction patterns over
large areas like in Fig. 2. Actual results of such a modelling are given
for five selected periods in Fig. 4. We see arrival-angle deviations
plotted as colour maps. The plot is the same in the background
of all four columns of Fig. 4. In the first column (‘data meas’),
this fine model is compared with the arrival-angle measurements
on the real data plotted using the same colour scale inside the
magenta-bordered AlpArray region. The same has been plotted also
by KSB2020, see the left-hand column of Fig. 3 therein (the selected
periods differ).

(ii) Direct modelling. Here we calculate the phase-time delays
only for the locations of stations. To be able to predict the phase
velocity and arrival angles, we also need to calculate the phase-
time delays in the immediate vicinity of the station to determine
the spatial derivatives of the phase-time delay distribution. The

derivative in the lateral direction R gives us the arrival angle. The
inverse of the derivative in the radial direction x, corrected for the
arrival angle, gives us the phase velocity. To obtain robust results by
spatial differentiating, we use the phase-time delays calculated for
points in a distance of ±10 km before (and after) as well as ±10 km
to both sides from the station to determine the values at the location
of the station. This roughly corresponds to the ±0.1◦ grid on which
the derivatives were calculated in case of the fine modelling above.
Note that the station distance of the AlpArray project is around
40 km (Hetényi et al. 2018). An example of arrival-angle deviations
modelled using this approach is given inside the magenta-bordered
AlpArray region in the second column (‘direct modelling’) of Fig. 4
(with the fine model in the background). This comparison shows
us, how well our station distribution maps the stripe-like pattern
spatially. Phase velocities obtained using the direct modelling will
be discussed later.

(iii) Measurement on synthetics. In this case, we again predict
the phase-time delays for the locations of stations. No additional
derivatives are needed. These phase-time delays are then treated, as
if they were measured between pairs of stations. It applies both for
the two-station measurement as well as for the array beamforming.
We simply subtract the phase-time delays at the two stations and
we add the time corresponding to the propagation in the 1D PREM
structure beneath the network. Hence, we obtain the time difference
exactly as if it was measured by correlating the two quasi-harmonic
signals. In case of the two-station method, the difference of epicen-
tral distances divided by this time difference gives us directly the
phase-velocity dispersion curve. In case of the array beamforming,
all the time differences between the neighbouring stations and the
central station of each subarray are again passed through the linear
regression to determine the slowness vector (the absolute value of
the phase velocity as well as the direction of propagation). An ex-
ample of such an array measurement on synthetic phase-time delays
is given in the third column (‘synthetics meas’) of Fig. 4 (again with
the fine model in the background). Such a comparison shows us how
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Figure 3. Coordinate system of x and R shown as a grid by every 1000 km.
The magenta AlpArray region, light green great circle connecting the epi-
centre and the centre of the AlpArray, orange great circle connecting the
epicentre and the anomaly head, blue circles showing the distance from the
centre of the AlpArray and the diffraction pattern are the same as in Fig. 2.
The map projection is chosen so that the great circles are represented by mu-
tually parallel vertical lines while the great circle wavefronts form mutually
parallel horizontal lines.

well our station distribution together with the array-beamforming
method maps the arrival-angle pattern. Again, the phase velocities
obtained by this array measurement on synthetics will be discussed
later.

The fourth column (‘time delay’) of Fig. 4 shows the phase-time
delays (inside the AlpArray region, brown-orange colour scale)
calculated by the fine modelling (i) with again the arrival-angle
deviations in the background. This comparison shows the relation
between the two quantities. We see that arrival-angle deviations
have their maxima and minima (the darkest colours) at the places
where the phase-time delays are zero (white stripes inside the Al-
pArray region, the time delays have their highest lateral derivative
there) and, the opposite, the zero (white) stripes of the arrival-angle
deviations are found at the places where the phase-time delays are
maximal or minimal (and hence their derivative is zero).

5 R E S U LT S

5.1 Emergence of phase-velocity wobbles

First, we explain how the stripe-like diffraction pattern of interfering
waves translates into dispersion-curve wobbles. We consider two
two-station profiles: one is between stations A188A and A213A of
a length of 343.38 km shown by red lines in Fig. 5, the other between
stations A291A and A076A of a length of 372.97 km shown by blue
lines. Both profiles are well-aligned with the great-circle direction:
the difference of the backazimuths between the more distant station
and epicentre, and more distant station and the closer station are
0.4◦ and 1.5◦ for red and blue profiles, respectively. Nine maps in
the middle of Fig. 5 show exactly the same phase-time delays using

the same colour scale as in the fourth column in Fig. 4 (where only
every second period is shown). Now, in Fig. 5, the pattern is plotted
over the whole map. Black dots in both panels above and below the
maps show the positions of these nine selected periods for which
the maps are plotted (five of these periods are shown also in Fig. 4).
Red and blue wobbled lines are the phase-velocity dispersion curves
measured on synthetic phase-time delays (modelling (iii) above).
When moving from short to long periods, the phase-time delay
pattern ‘opens’ its shape - stripes are getting wider and are moving
to the west (away from the axis of symmetry), see Fig. 4 here in our
current paper and also Figs 12 and 13 in KB2019. Thus, the two
stations at the given profiles are repeatedly affected by alternating
stripes of positive and negative phase-time delays, which give rise
to apparently higher or apparently lower phase velocities measured
between the two stations. At period of 103 s, the red profile has its
first station (closer to the epicentre) located in the brown region,
meaning negative time delay. The wave is coming apparently earlier
there. The second station is located in the orange region, where
the time delay is positive and hence the wave comes apparently
later to this station. Measuring the time difference between these
two stations at that period gives us longer propagation time than
would be the one if only the structure (PREM in our case) between
the stations was considered. This results in apparently low phase
velocity, which is why the black dot at 103 s period on the red
curve lies well below the structural PREM phase velocity shown by
light blue line. The same mechanism causes the positive velocity
deviations as well, see for example the period of 139 s at the red
curve.

Comparing the two dispersion curves (red and blue) we see that
they differ in several ways. The red one has more wobbles - we see
three positive and three negative extremes, while the blue one has
only two positive and two negative wobbles. It is due to the fact that
the stripes are getting narrower for the given period when moving
laterally away from the axis of symmetry (to the west). Red profile is
located more in this direction and hence when changing the period
in the given range, more stripes of narrower width strike the stations
with respect to the blue profile located more to the east, meaning
closer to the axis of symmetry. As a consequence, the wobbles are
also wider (in the period range sense) for the blue curve. In addition,
the blue wobbles are also of lower amplitudes (less deviated from
the structural PREM velocity). Even the phase-time delay stripes
are of higher amplitude closer to the axis of symmetry, because
they are wider, for the same profile length, it is less likely that one
of the stations is struck by positive extreme and the other by the
negative one at the same period. The stripes are simply too broad
with respect to the profile length. Also, the stripes are more aligned
to the great-circle paths around the axis of symmetry, meaning that
it is again more likely that both stations are located in the same
(positive/negative) stripe and so the wobbles are less pronounced.
In the extreme case, if the two-station profile lies exactly at the axis
of symmetry, meaning just behind the anomaly when looking from
the epicentre, there would be no wobbles since both the stations
will lie in the positive (central) stripe across the whole period range.
This, however, does not mean that the dispersion curve would not be
affected. It would still show a velocity different from the structural
one, because even in the single (positive) delay time stripe, the delay
changes with the distance from the anomaly. This is usually called
‘wavefront healing’. Blue profile is also more distant in the radial
direction from the anomaly than the red one. Later, we will see that
the position of the profiles in the radial distance matters as well
(it is not clearly seen yet from comparing only the two profiles in
Fig. 5).
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Wobbles of phase-velocity dispersion curves 1483

Figure 4. Measurement and modelling for five selected periods (rows). In the background of all four columns, we show the same arrival-angle deviations
predicted on a fine grid over the global scale. Inside the magenta AlpArray region, the first column shows the measurement from KSB2020. The second column
shows the direct modelling of the arrival angles. These are calculated by the same method as on the fine grid in the background, however, now only for the 499
subarray locations. Third column shows the arrival-angle deviations measured on synthetic phase-time delays. The last, fourth column shows the predicted
phase-time delays. As the arrival angles are defined as a lateral derivative of these phase-time delays, we see that the zero (white stripes) regions of arrival
angles correspond to the extremes of the phase-time delays and vice versa.

We again note that the structure under both (red and blue) profiles
is the same, characterized by the light blue PREM phase-velocity
dispersion curve in Fig. 5. Following the paper by Wielandt (1993),
we denote this as ‘structural’ velocity. The wobbled dispersion
curves are representing the phase velocities of the wavefield, and

we call them ‘dynamic’ velocities, following again the terminology
by Wielandt (1993). We can also note that below 40 s, where the
CVL anomaly has disappeared in our modelling, the dynamic and
structural velocities match each other (no diffraction and hence no
interference takes place).
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Figure 5. Synthetic dispersion curves for two two-station profiles in the AlpArray region (red and blue). The nine maps show the same phase-time delays as in
Fig. 4 (right-hand column, only five of the nine periods are shown in Fig. 4). Velocities for these nine selected periods are depicted also over both the dispersion
curves by black dots. Cyan lines are the PREM dispersions.

5.2 Two-station method

To see how the two-station measurements are affected spatially and
to show how the synthetic model matches the observation, we used
the AlpArray network to measure phase velocities over 95 profiles
using both synthetic phase-time delays and real data. Profiles are
organized in 5 sets of 19 profiles. They have three different lengths
- we measured two sets of profiles of short distances, two sets of
intermediate distances and one of long distances. Profiles in each set
are located in similar radial distance from the anomaly (epicentre)
and differ by the lateral position with respect to the axis of symmetry
of the diffraction pattern. The geometry is given in Fig. 6. We take
the advantage of the dense AlpArray seismic network, which allows
us to select suitable two-station pairs of desired lengths and positions
in the region. Dashed white lines show the great circles from the
epicentre. Different sets of profiles are plotted by different colours.

Brown and orange sets are the shortest ones with average profile
length of 144 km. The difference between these two sets is in the
radial distance from the anomaly (epicentre) - the brown set is
located much closer to the anomaly than the orange set. The average
epicentral distance of the first stations of the 19 profiles in the brown
set is 11 598 km while the average distance of the first stations in
the orange set is 12 242 km. The mutual shift of the sets of 644 km
represents 16 per cent of the distance (along x) to the CVL anomaly.
Red and blue sets represent intermediate lengths with 361 km of
profile length in average. Again, red set is closer to the epicentre than
the blue one with 11 634 and 11 996 km average epicentral distances
of the first stations in respective sets (difference of 362 km represents

9 per cent of the distance to the CVL anomaly). The longest green
profiles have average length of 750 km. As they span almost the
entire AlpArray region, there is no space for alternative positions
for such long profiles. The lateral distance range of all five sets of
profiles from the axis of symmetry of the diffraction pattern (along
R) is 1000–2450 km. Many stations are repeatedly used in profiles
of different sets.

Results of the measurement are given in Fig. 7. Each column of
dispersion curves represents one set of profiles. Synthetic dispersion
curves are plotted by respective colours (brown, orange, red, blue
and green) as given in Fig. 6 and dispersion curves measured on
real data are shown by grey lines. Profiles in each column are sorted
by the distance from the axis of symmetry starting with the most
distant profiles (west) at the top of the column ending up at the
bottom with profiles located the closest to the axis of symmetry
(east). Station names as well as the lengths of all profiles are given
in the figure as well. In each plot, the structural PREM dispersion
curve is given by light blue line. Below each of the five columns,
all the 19 profiles are summarized together for the respective set.

Before we compare the synthetic and real measurements, we need
to point out the principal difference between the two: while the real
data obviously reflect the structure beneath the Alps, the synthetics
do not. All the synthetic dispersion curves are calculated in 1-D
PREM model, while the structure beneath the Alps is very hetero-
geneous. In addition, the CVL is not the only anomaly on the way
from the South Atlantic Ocean to Europe. Real data measurements
are affected by wobbles emerging from other scatterers elsewhere,
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Wobbles of phase-velocity dispersion curves 1485

Figure 6. The AlpArray region with 534 stations (499 yellow triangles show the subarray central stations, 35 green triangles show the stations used as
neighboring stations). By coloured lines, we show the two-station profiles, including the two shown in Fig. 5. Thick white profile PCP-GRC2 is used as an
example in Fig. 1. Altogether, there are five sets of 19 profiles depicted by red, blue, green, brown and orange colours. In addition, there are also two sets of
subarrays shown as pink and purple circles. Great circles from the earthquake are marked by dashed white lines. Arrow shows the direction of wave propagation.
Arrays emphasized by white, light blue and light green circles are used for detailed examples, see the text.

see KSB2020 for the discussion. We are, however, interested in a
qualitative comparison of the shapes of the curves in this moment
to show, how the dynamic phase velocity adds up to the structural
one. Looking at all the 95 plots in Fig. 7, we see that most of the
dispersion curves show similar shapes comparing the synthetic and
real ones. We may note that:

(i) Shorter profiles have bigger wobbles. This is best-seen in the
bottom panels, where all the curves are plotted together. Going from
left to right (brown to green set), we see that the range of velocities
(wobbles) becomes smaller. This applies for both the synthetic as
well as the real curves.

(ii) Profiles closer to the source (to the anomaly) have bigger
wobbles. This is represented by the brown set having bigger wobbles
than the orange set, and by the red set having bigger wobbles than
the blue set. As the sets are sorted both by length and by distance to
the anomaly, we see monotonically decreasing range of velocities
(smaller wobbles) from brown (the shortest and also the closest) to
green (the longest) profile.

(iii) Profiles more distant from the axis of symmetry have bigger
wobbles. This can be seen by scrolling from the top profiles (west,
the most distant) down to the bottom ones (east, the closest) disper-
sions. As we go east (closer to the axis of symmetry), the wobbles
decrease. This applies for all five sets.
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Figure 7. Five sets of two-station profiles. Synthetic dispersion curves are shown by colours corresponding to the profiles shown in Fig. 6. Brown and orange
profiles are of the shortest lengths, red and blue profiles are of intermediate lengths and green profiles are the longest. The panel shows the western profiles on
the top and the eastern at the bottom. Grey lines show the measured dispersions using the data from the earthquake. Bottom panels show all 19 curves merged
into one panel to emphasize the range of velocities.

(iv) The match between synthetic and real curves is the better,
the longer the profiles are.

(v) In each set, there is a pattern of wobbles, which is shifting
to shorter periods when going from west (top) to east (bottom)
curves. The maximum velocity at the brown profile BANN-A175A
(top) around 135 s is slowly shifting to 45 s at MGR-MRVN profile
(bottom), where it almost disappears. This applies for the following
minimum as well going from 165 to 60 s. The same can be seen
at all 5 sets. Synthetic dispersions show this wobble shift always
very clearly. At the real data, the best pronounced shift of wobbles
is revealed at both intermediate sets (red and blue). It is, however,
present in all other real data sets as well.

(vi) Wobbles are more stretched along the period range for longer
waves. Their minima and maxima are getting closer when we move
to shorter periods.

(vii) The shorter the profiles are, the more complicated are the
real dispersion curves at shorter periods. This property cannot be
reflected in the synthetics, because below 40 s, the propagation is
modelled as homogeneous (CVL anomaly disappears).

(viii) The real data have, in general, bigger wobbles than the
synthetics. This behaviour is more pronounced for shorter profiles
(brown, orange).

5.3 Array beamforming

We showed how the diffraction pattern influences the two-station
measurement. Now, we will look at what happens when array beam-
forming is used for processing the same data. Fig. 8 has eight panels
(a–h), each showing 499 curves (black lines) corresponding to all
the subarrays used in our analysis. On the left-hand side, we show
the arrival-angle deviations (a, c, e, g), on the right-hand side the
phase-velocity dispersion curves (b, d, f, h). Each row (pair of pan-
els) corresponds to different technique by which the curves were
obtained.

The top pair (a, b) shows the subarray measurement on syn-
thetic phase-time delays following the method ‘(iii) Measurement
on synthetics’ described above. No heterogeneity was considered
anywhere in this case. It means that all the propagation was mod-
elled as if the whole Earth was only 1-D PREM. The light blue lines
show theoretical curves for the PREM, both for the velocities (b), as
well as for the arrival-angle deviations (a), where the line is simply
at zero (no deviations in 1-D model). The same light blue lines are
plotted also in the other panels of Fig 8(c)–(h). The deviation of the
499 black lines from the light blue line in panels (a) and (b) shows,
how well the array beamforming performs depending on the proper-
ties of the measurement, like subarray geometry, the technique used,
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Wobbles of phase-velocity dispersion curves 1487

Figure 8. Arrival-angle deviations (left-hand column) and dispersion curves (right-hand column) for 499 subarrays of the AlpArray region. The upper panels
show the results when the CVL anomaly was removed, meaning, all the propagation takes place only in the PREM. Arrival-angle deviations are expected to be
zero, dispersion curves are expected to fit the PREM model. Second row is the measurement using data (corresponds to the 1st column in Fig. 4). Third row
of panels shows the direct prediction of the arrival-angle deviations and dispersion curves using spatial derivatives around the station locations (corresponds to
the 2nd column of Fig. 4). Ranges (envelopes) of these direct results are copied by green lines to all the other respective panels. The bottommost row of panels
shows the measurement using the synthetic phase-time delays (corresponds to the 3rd column of Fig. 4).

sampling interval, number of stations in each subarray, epicentral
distance (planarity of the waves) and so on. It gives us an idea about
the precision of the technique itself, with arrival-angle deviations
ranging between −0.52◦ and +0.75◦ (a) and phase velocities in the
range of ±0.019 km s–1 (b) around the PREM velocities. Such a

deviation represents a measurement error of 0.48 per cent for the
velocity of 4 km s–1.

The second pair of panels (c, d) shows the results of measurement
using the real data. We see a broad range of arrival-angle deviations
(c) as well as of velocities (d). The distribution is however not
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Figure 9. Dispersion curves measured on synthetic phase-time delays for two subarray sets (17 subarrays each). Pink curves correspond to southern subarrays
(pink circles in Fig. 6), purple curves correspond to northern subarrays (purple circles in Fig. 6). Black lines are the dispersion curves measured using subarray
on real data. Brown and orange are the synthetic dispersion curves from the two-station method for the two respective profile sets shown also in Fig. 6 (map)
and Fig. 7 (dispersions). Grey are the respective two-station measurement using real data as in Fig. 7. These two two-station sets correspond in length to the
size of the subarrays - see the brown profiles crossing the pink circles and orange profiles crossing the purple circles in Fig. 6. Bottom panels show the subarray
dispersions and arrival-angle deviations merged for each set to show the range of values. Arrival-angle deviations emphasized by white, light blue and light
green margins are used for examples, see text for details.
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Figure 10. Set of 21 dispersion curves (left-hand panels) and arrival-angle deviations (right-hand panels) for two subarrays A006A (top panels) and A350A
(bottom panels). Subarrays are shown by white circles in Figs 6 and 14, their respective arrival-angle deviations are also emphasized by white margins in Fig. 9.
Phase velocity cloc is varying and the phase velocity cglb is kept constant (PREM). Colours denote the variation of cloc with respect to PREM.

random. Velocities follow the trend of increasing values towards
longer periods and arrival-angle deviations show the broadest scatter
between 60 and 100 s with a ‘neck’ of very narrow range of values
around 50–55 s. This arrival-angle deviation panel (c) corresponds
to the colour maps inside the magenta-bordered AlpArray region in
the first column in Fig. 4.

Next row in Fig. 8(e) and (f) represents the direct modelling of
both arrival-angle deviations (e) and phase velocities (f) according
to ‘(ii) Direct modelling’ method described above. We calculated
the arrival-angle deviations and phase velocities for each of the 499
subarray central stations using spatial differentiating of the phase-
time delays when CVL model according to Fig. 2 is considered.
Green lines in the panels (e) and (f) are taken as envelopes of all the
values and are repeated also in the other three rows of panels (a–d)
and (g, h) for comparison. The arrival-angle deviation panel in this
row (e) corresponds to the colour maps inside the magenta-bordered
AlpArray region in the second column in Fig. 4.

The last bottom pair of panels in Fig. 8(g) and (h) uses the same
method of ‘(iii) Measurement on synthetics’ as in the top pair (a, b),
however, now for the phase-time delays modelled including the CVL
anomaly as in the third pair of panels (e) and (f). Comparing directly
the third and fourth pair of panels [(e) with (g) and (f) with (h)],
we see that using the array measurement, we slightly underestimate
the arrival-angle deviations which is due to the fact that arrays
have larger aperture (±80 km) than what was used for the spatial
differentiating (±10 km). Deviations are hence slightly smoothed.
On the other hand, we slightly overestimate the range of dynamic
phase velocities, see the small margins of black lines leaking out of
the green envelopes in (h). The arrival-angle deviation panel in this
row (g) corresponds to the colour maps inside the magenta-bordered
AlpArray region in the third column in Fig. 4.

Results shown in Fig. 8 allows to draw an important conclu-
sion. It is obvious that propagation of interfering waves causes
the arrival-angle deviations [(c) and (g)]. But we obtain also wob-
bled dispersion curves [(d) and (h)] even the array beamforming

already takes into account the arrival-angle deviations when cal-
culating the velocity. In other words: knowing the ‘true’ arrival
angle does not help to measure the structural velocity. It is still
the dynamic phase velocity which we get. Looking only at the
dispersion curves measured on real data (d), one could attribute
all the differences among the 499 curves to the structure beneath
the particular subarrays. However, the synthetic model (h) shows
that most of the differences among the 499 curves are still due to
the propagation effects having nothing to do with the local struc-
ture, which is the same for all the curves in (h). The green en-
velopes plotted over the curves measured on real data in (d) span
a striking portion of the total velocity range of all the dispersion
curves. This finding is close to the ‘frustrating result’ of Friederich
(1998), who pointed out, that the data (phase velocities) can, in
principle, be completely explained by the properties of the incom-
ing wavefield not requiring any variations of the local structure at
all.

To understand the wobbles emerging at the subarrays, we will
look at a subset of subarrays in detail. Similarly as in the case of
the two-station profile sets, we designed two sets of subarrays. Each
set has 17 subarrays. Pink set is closer to the CVL anomaly and
purple set is more distant. Both sets of subarrays are shown by
respective colours in Fig. 6 by circles of 160 km in diameter. In
addition, the pink subarray set was designed to correspond to the
brown two-station set and the purple subarray set corresponds to
the orange two-station set. It means that the shortest two-station
profiles intersect the subarrays through their centres as far as the
geometry allows and their lengths are as close to the 160 km of
the subarray diameter as possible. This we use to compare the
results of the two-station method and array beamforming at the same
location. We do this comparison for both the real data as well as for
synthetics. Results are shown in Fig. 9. Similarly as in Fig. 7, we plot
the subarrays starting with the westernmost (most distant from the
axis of symmetry) at the top continuing to the east at the bottom.
Left-hand column is for (pink) subarrays closer to the anomaly
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Figure 11. The same as in Fig. 10, but now cloc is kept constant and cglb is varying.

(epicentre), right-hand column shows subarrays (purple) in the north
(more distant from the anomaly). Respective colour lines are used
for the dispersion curves calculated using array beamforming on
synthetic phase-time delays (pink and purple). Black lines are used
to show the dispersion curves measured using the real data at each
subarray. Behind the real and synthetic curves from subarrays, we
redraw the dispersion curves from the first (brown) and second
(orange) column from Fig. 7. Again, synthetics are shown by the
respective colour (brown and orange), real data curves by grey lines
exactly the same as in Fig. 7. The very first (westernmost) and
the very last (easternmost) two-station profiles from Fig. 7 are not
used because their position close to the edge of the network did
not allow to construct subarrays at the same place. Each subarray
is characterized by its central station name in Fig. 9, see also the
map in Fig. 6. The number behind the central station name in Fig. 9
tells how many stations the particular subarray contains. At the
bottom of Fig. 9, again similarly as in Fig. 7, we summarize all
the 17 measurements together to see the ranges of values. The
bottom panel shows phase velocities. Only subarray measurements
are given in these summarizing panels (no two-station curves). In
addition, we also present a summarizing panel for the arrival-angle
deviations - this information cannot be obtained by the two-station
method.

Comparing the synthetic and real data curves for subarrays
(pink + black and purple + black), we again see general similarity.
The match of data and synthetics is better for the middle (in the
west-east direction) profiles. The main wobbles are pronounced
in both the data and synthetics and the spatial shift of wobbles
again follows the same trend both in data and synthetics, similarly
as in the case of the two-station method shown in Fig. 7. One
can easily follow the large negative wobble from around 145 s
at the A280A subarray (pink) moving to 70 s at the easternmost
SGTA subarray both in data and synthetics. The purple profile
shows the negative long-period wobble shifting from 145 to 55 s
across the whole set of 17 subarrays. Other positive/negative
wobbles can be followed as well. Comparing the measurement
on data for both methods (subarrays-black + two-station-grey

lines) we see general similarity as well. The array-based dispersion
curves themselves show the same features as those measured
by the two-station method, see the points (i)–(viii) above. What
is, however, the most striking is the similarity of the synthetic
dispersion curves measured using subarrays and the two-station
method (pink + brown and purple + orange) at their respective
locations. There are differences but in general, the geometry of the
subarrays and of the two-station profiles differs a bit as well.

There are, however, two lucky examples, where the geometry
is almost ideal. The VAGA subarray (pink set, second from the
bottom in Fig. 9) is intersected by the two-station profile IOCA-
FRES with a length of 150.75 km, which crosses the central station
VAGA and spans exactly the aperture of the subarray. In addition,
this profile is perfectly aligned with the great-circle direction. This
subarray is emphasized by a light green circle in Fig. 6. Looking
at the synthetic dispersion curves at this spot in Fig. 9, we see that
they are almost the same for the two-station method (brown) and
for the subarray (pink). Moreover, the data dispersion curves are
also very similar. In the summarizing arrival-angle deviation panel
at the bottom of Fig. 9, the curve for the VAGA subarray is also
emphasized by light green margins as is the circle in Fig. 6. The
range of deviations spans from −6.1◦ (at period of 135 s) to +10.3◦

(at period of 78 s). In case of the two-station measurement, we do not
know this deviation assuming simple propagation along the great
circle. In case of the array measurement, we do know the angles
and the velocity determination takes these into account. However,
the velocity results of both methods are almost the same. Making
and error of 10.3◦ in the propagation direction leaks in the velocity
error of 1.6 per cent as cos(10.3◦) = 0.984. This is actually roughly
the difference we see between the brown (IOCA-FRES profile) and
pink (VAGA subarray) dispersion curves in Fig. 9 at their minima
around 78 s. The velocities are 3.80 km s–1 for the two-station
profile and 3.75 km s–1 for the subarray, the difference of 0.05 km s–1

represents 1.3 per cent. The remaining 0.3 per cent is attributed to
the non-perfect geometry. Also note that the minimum is slightly
shifted between the subarray (at 77 s) and the profile (at 79 s). The
important thing to note is that the difference of both these dynamic
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Figure 12. The same as in Figs 10 and 11, but both cloc and cglb are varying (simultaneously).

phase-velocity dispersion curves from the structural one (light blue
curve for PREM) is 5.5 per cent (two-station method) and 6.7 per
cent (subarray), as PREM has the velocity of 4.02 km s–1 at 78 s
period. Similarly perfect geometry is found for the CSNT subarray
(pink set, emphasized by light blue circle in Fig. 6) and CASP-
LMD two-station profile (brown set, length of 158.31). We can draw
similar conclusion for the CSNT subarray as well. Corresponding
arrival-angle deviation curve for CSNT subarray is emphasized by
light-blue margins in Fig. 9.

We see that knowing the arrival angle in case of subarrays does
not make much difference when comparing the velocity to the two-
station measurement. In addition, array measurement even does not
make it necessarily better, as in the VAGA subarray case, where
the two-station dynamic velocity is luckily closer to the PREM
structural velocity than is the subarray dynamic velocity. Looking
at the other example of the CSNT subarray (Fig. 9), we see that the
two synthetic dispersion curves swap the positions when moving
over the period range. At the minimum wobble around 120 s, the
brown two-station curve is closer to the structural, at the maximum
wobble around 80 s, it is the pink array curve, which is closer.

5.4 Modelling the wobbles

Up to now, we considered the phase velocity c(T) of our medium
being the same everywhere around the (CVL) anomaly. KB2019
used the same symbol ‘c’ in both the Eqs 2 and 4 therein (as well
as KSB2020 used the same symbol in Eqs 1 and 3 therein). How-
ever, in general, we can consider these velocities to be different.
This is the reason why we have labeled them by different subscripts
in the rewritten Eqs (2) and (3) in the ‘4 Modelling’ section of
the current paper above. In Eq. (2), the phase velocity cglb repre-
sents the velocity everywhere between the anomaly (scatterer) and
the place of measurement (hence the subscript global). In Eq. (3),
however, the cloc represents the velocity right beneath the subarray
(marked as local then). Let us see what happens, if we vary these
velocities independently. As an example, we will measure the dis-
persion curves on synthetic phase-time delays for two subarrays at

the purple set - A350A and A006A emphasized by white circles
in Fig. 6, with respective arrival-angle deviations emphasized by
white margins in the summarizing panels at the bottom of Fig. 9.
These two subarrays have similar radial distance x to the anomaly
(and epicentre), and they significantly differ by the lateral distance
R to the axis of symmetry of the diffraction pattern. Fig. 10 shows
what happens when the global cglb is kept the same (as before at
100 per cent PREM) and cloc is varying in the range of ±10 per
cent around PREM. There are 21 dispersion curves in the left-hand
panels of Fig. 10 going from 90 to 110 per cent with a step of 1
per cent of the PREM velocity, plotted by different colours, see the
legend in the right-hand side of the figure. The wobbles stay at the
same position with respect to the period, as the cglb is responsible for
the shape of the whole diffraction pattern, which does not change.
Not surprisingly, changing the local cloc shifts the dispersion curves
up and down. What is more worthwhile to note is the fact that for
higher cloc (blue lines), the wobbles are bigger. Arrival-angle devi-
ations in the right-hand side panels (again 21 curves) also keep the
same position of the maxima and minima. Higher local velocities
produce higher deviations, what can be also directly seen from Eq.
(3). The causal relation is as follows: because the arrival-angle devi-
ations are higher for higher structural velocities (Eq. (3)), the devi-
ation of the dynamic velocity from the structural (wobble) is bigger
as well.

The second example shows the varying wobbles when the cloc

is kept constant and only the cglb is varying. Fig. 11 follows the
same layout as Fig. 10. We see that the dispersion curves stay
roughly at the same velocities as cloc is constant, and that the wob-
bles are shifting with period as the cglb closes and opens the whole
diffraction pattern. Decreasing the cglb closes the pattern while in-
creasing the period opens it, see Figs 12 and 13 in KB2019. If, at
the same location, we would like to see the same wobble (a wob-
ble corresponding to the same stripe of the interference pattern),
with decreasing the cglb (moving to red curves), we need to increase
the period to compensate the lower cglb. Arrival-angle panels show
that the change of the amplitude of the deviations is much more
pronounced than in the previous example. Decreasing the cglb not
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only changes the geometry of the pattern (closing it) but it also
dramatically enlarges the arrival-angle deviations (red deviations
span broader range of angles than blue deviations). This effect is
larger for the subarray A350A which is more distant from the axis of
symmetry.

The last example, given in Fig. 12, combines both the previous
cases varying both cloc and cglb together. They move synchronously
in this case. We see a combination of all previous changes: wob-
bles are changing their position with respect to period, they are
changing its amplitude and curves are shifting up and down. In-
teresting to note is the difference between the two subarrays: as
lower cloc diminishes the arrival-angle deviations (Fig. 10) and as
lower cglb enlarges them (Fig. 11), varying both together yields
nonintuitive results: At A006A the positive arrival-angle deviations
decrease with decreasing both the velocities and at A350A the pos-
itive deviations increase. The negative ones do the opposite: they
increase (in their absolute values) at A006A and decrease at A350A.
We may also say that the deviations are shifting towards negative
values for A006A and towards positive values for A350A when
decreasing cglb and cloc. Everything anyway slightly trades-off with
period.

Additionally, we may construct any combination of increas-
ing/decreasing local and global velocities. The wobbles emerge as
a complex combination of the subarray location and the diffraction
pattern crossing that location. The diffraction pattern at given period
depends on the distant heterogeneity properties (location, strength,
geometry) and on the velocity along the path from the heterogeneity
to the subarray. Moreover, the arrival-angle deviations are modified
by the local phase velocity. Hence the wobbles can vary significantly
for geographically close locations of subarrays. The main outcome
of this exercise is to show how complex the behaviour is and that
choosing the proper parameters, we can actually model the wob-
bles almost arbitrarily. This is to explain the discrepancy between
the measurement of the real data and synthetics: in Figs 7 and 9,
the modelling is simplified assuming the same phase velocity ev-
erywhere (cloc = cglb). Nevertheless, it still gives us the qualitative
understanding of the phenomenon. Modelling with varying cloc and
cglb (not even mentioning that cglb does not need to be homoge-
neous over the whole wavefield path as well as cloc does not need to
follow variations of the PREM but it can be much more complex)
would give us better match between the data and synthetics. The
point of our paper is, however, not to fit the data with the model,
but to show the principles governing the phase-velocity wobbles
emergence.

5.5 How non-plane are the non-plane waves?

We will now investigate, what happens with the shape of the wave-
front, when surface waves are affected by the interference after the
CVL anomaly diffraction. As an example, we will use again the two
subarrays as in the previous figures, namely A350A and A006A,
see white circles in Fig. 6. Fig. 13 shows four panels for A350A
subarray (left-hand panels) and the same panels for A006A subarray
(right-hand panels). At the top, we plot the arrival-angle deviations.
Purple lines show the synthetic (as both subarrays belong to the
purple set, see Figs 6 and 9) and black lines the measured devia-
tions using the real data. These synthetic curves are the same as
those emphasized by white margins in the summarizing panel at
the bottom of Fig. 9 (right-hand side). We see qualitatively good
match between the synthetics and data. The second row of panels
of Fig. 13 shows the dispersion curves. Again, purple lines are for

synthetic and black for real-data curves. These curves are the same
as in Fig. 9 (right-hand panel). We also see qualitatively matching
velocity wobbles between synthetic and real-data dispersion curves.

As explained in KB2019, when fitting the plane into the mea-
sured time differences of the subarray (linear regression), we obtain
time residuals, which tell us, how much the actual measurement
deviates from the fitted plane. These residuals were used to assess
the data quality in the KB2019 paper. In case of synthetics, how-
ever, the ‘data’ quality is perfect. In this case, the residuals can be
used to quantify the curvature of the wavefront from the plane. The
third row of panels in Fig. 13 shows the residuals for each of the
neighboring stations (16 in case of the A350A subarray and 13 in
case of the A006A subarray). We see the residuals wiggling in the
range of ±1.4 s creating a pattern, where high positive residual at
some station is followed by negative residual of almost the same
shape (mirrored) at different station. To obtain a common measure
of the curvature of the wavefront across the whole subarray, we
calculate a mean residual, which is an average of the absolute val-
ues of all these individual residuals for each period. These mean
absolute residuals are plotted in the bottom panels of Fig. 13 by
dark blue lines. In addition, the black lines in the bottom panels
show the residuals for real data. The shape is similar, especially
for the A006A subarray. These real-data residuals are, of course,
higher, containing also the measurement and real-data errors and
noise.

Black vertical lines mark the positions of local minima of the
mean absolute residuals with respect to the period range. Solid black
lines are used for residual minima, which correspond to high phase-
velocity deviations in the second row of panels. Dashed black lines
are used for residual minima corresponding to the velocity lows. We
see that whenever the mean absolute residual is low, the dynamic
phase velocity has locally the highest deviation from the structural
phase velocity (showed by cyan line for the PREM in the second
row of panels). Also, at these periods, where the velocity is deviated
the most, the arrival-angle deviations are (locally) the highest. Qual-
itatively, the mean absolute residual behaves as a derivative of the
velocity (and arrival-angle deviations) with respect to the period.
It means that the wavefront is the closest to the plane wave at the
periods where the discrepancy between the structural and dynamic
velocity is the highest. It goes against the common belief that plane
wave gives us the ‘true’ velocity. It is rather the opposite. Hence,
assuring the planarity of the wavefronts does not help to determine
the structural velocity.

Fig. 14 shows two maps for two periods (80.4 and 67.7 s) marked
by vertical green lines over all panels in Fig. 13. Synthetic arrival-
angle distribution is shown by the colour background in Fig. 14.
The colour scale is the same as in Figs 2–4. At 80.4 s, subarray
A350A is situated in the maximum of a negative arrival-angle de-
viation stripe while subarray A006A is situated in the maximum
of a positive stripe. Both subarrays (shown in Fig. 14 by white
circles, the same as white circles in Fig. 6) show a minimum of
mean absolute residuals in Fig. 13 for the period of 80.4 s, meaning
the wavefront is almost a plane wave. This wavefront is plotted in
Fig. 14, top map, by dark blue lines, which correspond to every
2 s of propagation of the 80.4 s Rayleigh wave with the velocity of
4.030 km s–1 (PREM) after passing the CVL anomaly of the width
of 374.3 km and τmax = 46.38 s, as set by the CVL model in Fig. 2.
For comparison, we plot also the circular PREM wavefronts by cyan
lines. The mean absolute residuals for these PREM wavefronts are
shown in the bottom panel of Fig. 13 as well by cyan line. Note that
these are not zero, but have the value of 0.02 s across the period
range. This is because the modelled PREM wavefront is circular, not
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Figure 13. Arrival-angle deviations, dispersion curves and time residuals for two subarrays are shown for real data, synthetic model with CVL anomaly and
synthetic PREM (1-D model only). Black vertical lines denote the residual minima, solid black corresponding to high-velocity deviation and dashed black for
low-velocity deviations. Green vertical lines show the two periods (67.7 and 80.4 s) discussed in Fig. 14 (see text).

planar. The radius of that circle (wavefront curvature) is the same
for all periods. In Fig. 14, we see how the CVL-anomaly wave-
fronts deviate from the PREM circular wavefronts. To emphasize
the difference, cyan arrows show the propagation along the great
circle and dark blue arrows show the propagation direction obtained
from the subarray measurement by fitting a plane into the distorted
CVL-anomaly wavefronts. The respective arrival-angle deviations
are labeled in both Figs 13 and 14 as well (−5.96◦ for A350A
and + 8.98◦ for A006A). These high arrival-angle deviations corre-
spond to high difference between the structural and dynamic phase
velocity (Fig. 13): the wobble is positive in the case of the A350A
subarray (green vertical line at 80.4 s coincides with the solid black
vertical line in Fig. 13) and negative in the case of the A006A sub-
array (green vertical line at 80.4 s coincides with the dashed black
vertical line in Fig. 13). Dashed white lines in Fig. 14 show the
great circles from the epicentre, the same as in Fig. 6. The dark blue
CVL-anomaly wavefronts inside the white-bordered subarrays are
highly deviated from the great-circle wavefronts, however, they are
still almost perfectly plane for the period of 80.4 s. The opposite is
seen in the bottom map of Fig. 14, where the same is plotted for the
period of 67.7 s. Both subarrays are now situated in the regions of
very low arrival-angle deviations (white colour of the background)
and also the dynamic and structural velocities are almost the same
(Fig. 13). The period of 67.7 s is also emphasized in Fig. 13 by
vertical green line plotted over all the panels. Again, in Fig. 14,

bottom panel, we show a CVL-anomaly-distorted wavefront for ev-
ery 2 s of propagation at 67.7 s period of Rayleigh wave with the
velocity of 3.998 km s–1 (PREM) passing the CVL anomaly of the
width of 387.0 km and τmax = 32.96 s (see Fig. 2). The arrival-
angle deviations at both subarrays are small (again labeled in both
Figs 13 and 14, having the values of −0.64◦ and +2.18◦ for A350A
and A006A subarray respectively), however, the residuals are now
much higher at the period of 67.7 s than they were in the previous
case at period of 80.4 s showing that the wavefront is actually very
curved. While before, at the period of 80.4, we had almost perfectly
plane wave and the discrepancy between the dynamic and structural
velocity was high, now, at 67.7 s, where the dynamic velocity is
almost equal to the structural, the wavefront is actually very curved.
We see that high arrival-angle deviation means high discrepancy
between dynamic and structural velocity even the wave is almost
planar. Low arrival-angle deviation means that dynamic velocity
is almost equal to the structural and the wavefront is significantly
curved.

In both Figs 13 and 14, we marked also the stations with the
highest individual residuals. These are A351B (red line in Fig. 13
and red triangles in Fig. 14) and CRUX (light blue line in Fig. 13 and
light blue triangles in Fig. 14) stations for the A350A subarray. The
same for A015A (magenta line in Fig. 13 and magenta triangles in
Fig. 14) and A333A (light blue line in Fig. 13 and light blue triangles
in Fig. 14) stations for the A006A subarray. Not surprisingly, the
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Figure 14. Arrival-angle deviations (colour map, the colour scale is the same as in Figs 2–4), PREM circular wavefronts (cyan) and CVL anomaly synthetic
wavefronts (dark blue) shown in detail for two subarrays from Fig. 13 (dispersions shown in Figs 10–12, location shown in Fig. 6 by white margins behind the
purple circles). Dashed white lines show the great circles from the epicentre, cyan and dark blue arrows denote the propagation direction of the PREM and
CVL-anomaly wavefronts, respectively.

stations with the highest residuals are always at the outer edges of
the subarrays.

6 D I S C U S S I O N

Looking at the papers mentioned in the introduction, and also in
the Appendix, section ‘A.5 Possible explanation’, we see that there
has always been a general agreement on the wobbles being caused

by interference of the fundamental mode of surface waves with
different wavegroups. The studies differ by suggesting, what are
these interfering waves: Brune & Dorman (1963) - Sa and Sn waves,
Pilant & Knopoff (1964) - multiple events, Knopoff et al. (1966) -
multipathed wave trains, Knopoff & Mal (1967) - back reflection
from inclined Moho, Thatcher & Brune (1969) - mode interference,
Dziewonski (1970) - lateral refraction, Capon (1970) - refraction at
continental margins, Weidner (1972, 1974) - interference caused by
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waves scattered from the Mid Atlantic Ridge. Our paper connects
with the idea of Weidner (1972, 1974) confirming the wobbles being
caused by the interference of a single mode of the same surface-
wave type (fundamental mode of Rayleigh waves). We do not deny
the other explanations. They take place in certain cases. However,
we say that the main portion of wobbles seen at the dispersion
curves measured using the records on AlpArray seismic network
from the earthquake propagating from the South Atlantic Ocean are
caused by interference of diffracted fundamental-mode Rayleigh
waves after passing the CVL anomaly in Central Africa. We have
collected evidence which effectively excludes other explanations.
These are namely the points (i)–(viii) in the section ‘5.2 Results -
Two-station method’. Let us give some comments to these points.

(i)–(iii): Points (i)–(iii) talk about the geometry of the interference
(diffraction) stripes of arrival-angle deviations (phase-time delay)
which cause characteristic amplitude of the wobbles being bigger
when the measurement is closer to the anomaly, more distant from
the axis of symmetry and when the profiles are shorter. Especially
the fact that shorter profiles have bigger wobbles is interesting. For
the two-station method, a limiting condition is usually used. Profiles
need to be longer than a certain distance (Legendre et al. 2014 -
250 km; Mitra et al. 2006 - 200 km; Prindle & Tanimoto 2006 -
150 km; Foster et al. 2014 - 100 km). Sometimes, the authors note
that if the distance is too short, the measurement does not work
(Meier et al. 2004, Baumont et al. 2002; Bourova et al. 2005).
However, no explicit reason is usually mentioned for that, besides
general statements that the measurement is more stable for longer
paths and that shorter profiles are more affected by noise. Of course,
measurement errors play a role. For closer stations, the relative
error is higher as the measured time difference is smaller (Bourova
et al. 2005; Foster et al. 2014). Our synthetic phase-time delays, on
which we measure the interstation phase velocity, however, have no
measurement errors and we still see the wobbles for both short and
long profiles. We now have a clear explanation as to why the shorter
profiles suffer by higher wobbles. They are more likely to span
right from one negative to the other positive stripe of phase-time
delays causing the highest apparent velocity difference between
the stations. There is no clear limiting distance of the two stations,
below which the two-station method does not work and above which
it does. The longer the two-station profile is, the smaller are the
wobbles, but the wobbles are still present for any distance. The
green envelopes of arrival-angle deviations and phase velocities
from Fig. 8(e) and (f) are not only copied to the other panels of
the same figure, but for comparison, we also repeat them in Fig. 7
(two-station method) and Fig. 9 (subarrays). While in Fig. 9, the
pink and purple sets of subarrays obviously fit into the envelopes,
as the envelopes are calculated using all the 499 subarrays and Fig. 9
shows a subset of these 499 subarrays, the comparison in Fig. 7 is
more interesting. It clearly shows that while the brown two-station
set (the closest to the anomaly and of the shortest lengths) spans
the whole range of subarray velocities, all the other four two-station
profile sets span smaller range of velocities, as they are either longer
or more distant from the anomaly than the brown two-station set.
We can say that subarrays velocity estimation performs as badly
as the shortest two-station profile estimation. Note that we are still
talking about ‘bad’ performance in terms of the discrepancy between
the structural and dynamic velocity. The array measurement itself
performs well. As shown also by Pedersen et al. (2003) and Bodin
& Maupin (2008), arrays can be used to measure phase velocities
of wavelengths ten times longer than is the array aperture. In other
words, the measurement is correct, just the velocity we obtain is
always only the dynamic one.

In case of the two-station method, sometimes, instead of a fixed
limiting (smallest) distance between the two stations, a relation to
the wavelength is used (Meier et al. 2004 - a general comment on
that one of the profiles is too short with respect to wavelength; de
Vos et al. 2013 and Ekström 2014 - interstation distances longer than
two wavelengths are used; Wu et al. 2020 - using only wavelengths
shorter than the station distance). In our modelling, for a given
profile length, the wobbles may seem to be bigger for longer waves
(at 140 s, they are bigger then at 80 s). The reason is, however, not
the interstation distance, but the size of the CVL anomaly, which
appears stronger for longer waves. As the CVL almost disappears
for waves over 180 s in our modelling, the wobbles disappear as
well even for the shortest profiles. Of course, real data suffer by
the measurement errors. However, we again do not see any limiting
interstation distance compared to the wavelength in case of the
two-station method.

(iv): Point (iv) in Section 5.2 says that the match between synthetic
and real curves is the better, the longer the profiles are. This is
caused by two independent reasons: Longer profiles give us more
averaged structural information, which tends to be closer to the
PREM used for calculating the synthetics. In the same time, the
wobbles are getting smaller as the longer profiles span bigger portion
of diffraction stripes averaging also the effect of different phase-time
delays.

Another interesting observation is that the wobbles are bigger
for profiles (both from the two-station method as well as from
subarrays) that are more distant from the axis of symmetry (even
when the radial distance to the anomaly and source is kept the same).
This is obvious from all the seven sets of profiles in Figs 7 and 9,
where the wobbles at the top (west, more distant) are always bigger
than the wobbles at the bottom (east, closer to the axis of symmetry).
This observation is connected with the fact that the outer lobes of
arrival-angle deviations have larger amplitude than the central lobes.
This ‘swap’ of amplitudes happens after a certain distance from the
anomaly, and it happens the closer to the anomaly, the longer the
waves are. That can be seen in Fig. 4 at the background arrival-angle
deviation maps. For the period of 49.2 s, the first positive lobe clearly
dominates the pattern at the radial distances (from the anomaly and
from the epicentre) of AlpArray region. However, at the period of
66.2 s, the first and second positive lobes has equal amplitudes and
for periods longer than 89.0 s, the second positive lobe has clearly
higher amplitude than the first one. When we move to the longest
periods, we see the same for the arrival-angle deviations gradually
becoming higher at the third lobe than are those at the second lobe.
When we look at a single period, for example 89.0 s in Fig. 4, the
first positive lobe has clearly decaying amplitude with the radial
distance (it is more red in the south and only yellow in the north),
the second positive lobe keeps its amplitude roughly constant over
the span of the map and the third positive lobe clearly increases its
amplitude with the radial distance (it is more red in the north and
yellow in the south). The same is also seen in Fig. 2 for the 100 s
wave. Figs 3, 6, A1 and B1 in KSB2020 show the same.

The latter paper also suggests an explanation for this observation,
see KSB2020, Appendix D - The Yellowstone plume. The phase-
time delays of outer lobes have smaller amplitudes than those of
the first lobe. However, the lobes are getting narrower with the
lateral distance from the axis of the symmetry. As the arrival angles
(and hence also the phase-velocity wobbles) are given by the spatial
derivative of these phase-time delays in the lateral direction, and
as these phase-time delays are varying over shorter distances, the
derivatives are getting higher. Following Liu & Holt (2015), the
Appendix D in KSB2020 deals with the gradiometry coefficient �B,
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Figure 15. Arrival-angle deviations for 100 s Rayleigh wave measured from the M = 7.4 earthquake in the South Atlantic Ocean on vertical Z and radial R
components. Left-hand plot corresponds to Fig. 4 of the current study and also to Fig. 3 in the KSB2020 paper.

(negative slowness). Fig. D1 in KSB2020 shows the pattern of ∇. �B
(the divergence of �B), which is a second spatial derivative of the
phase-time delays. Arrival-angle deviations are only a first spatial
derivative of the same delay times. The second derivative enhances
obviously even more the outer lobes. This is why we see so many
outer lobes of ∇. �B in Fig. D1 in KSB2020.

(v): Shifting pattern of wobbles. This spatial match between the
wobble pattern, which is preserved both in the data as well as in
synthetics for both the two-station profiles as well as for subarray
measurements, could be hardly achieved by any other explanation.
AlpArray network allowed to perform a two-station measurement at
95 profiles with ideal geometry sampling the region with unprece-
dented density of paths. The fact that we see a consistent shift of
the wobbles with period when moving the profiles from west to east
supports the proposed mechanism of wobble emergence the best.

(vi): Wobbles are more stretched along the period range for longer
waves. This can be generalized to point out that the wobbles are
repeating across the period range. In other words: the stretch of the
wobbles towards longer periods is observed because the wobbles are
repeatedly taking place over the whole period range. If there was
only one wobble, we could not talk about stretching of the others.
Explanations like the steps in Moho yield only limited number of
wobbles (three) at certain period range which is sensitive to the
given depths (Knopoff & Mal 1967). Observing the wobbles over
broad period range again supports the idea that their cause must be
spanning broad range of depths.

(vii): The shorter the profiles are the more complicated are the
real-data dispersion curves at shorter periods. There are two reasons
for that. One can be attributed to the structure (inverse to what is
stated in point (iv)): Longer profiles are averaging the structural
heterogeneity while the shorter ones are reflecting the complexity
of the locality. Second reason follows the dynamic behaviour of the
wobble emergence: Shorter profiles have always bigger wobbles as
discussed under (i). Even it is not modelled below 40 s in our case,
the interference still takes place there as well. The diffraction is not

necessarily caused by the CVL - it can be due to any other anomaly,
maybe closer to the network, smaller in scale affecting rather the
shorter wavelengths. The wobbles at the real-data dispersion curves
for short period anyway follow the rule (vi) that they are wiggling
faster along the period axis. However, this fact does not help to
distinguish between the structural and dynamic effects, because
also the sensitivities of surface waves to the structure are narrower
in the period range for particular depths (Brune & Dorman 1963;
Novotný 1970; Novotný et al. 2005).

(viii): The real data have, in general, bigger wobbles than the
synthetics. This is an issue mentioned already by KSB2020. While
inverting for the diffraction pattern across the AlpArray, the mod-
elled arrival-angle deviations were systematically lower than the ob-
served ones. We could not simply make the CVL anomaly stronger.
It would lead to higher deviations, but it would, at the same time,
change the geometry of the pattern significantly. The model of CVL
anomaly given by KSB2020 is based rather on fitting the geometri-
cal pattern of the stripes even though the amplitude of the deviations
were not matched completely. A proposal how to explain this issue
is given by the modelling presented in Figs 10–12 of our current
work. The arrival-angle deviations are affected both by the global
phase velocity cglob, which shapes the geometry of the pattern and
gives rise to the main portion of the deviations, as well as by the local
phase velocity cloc under the subarray (two-station profile), which
may still increase the deviations significantly (without changing
their position in the period range). Including the real velocities both
for the global wavefield propagation as well as for the local subar-
rays would lead to a better fit between the real data and synthetics.
However, neither KSB2020 nor our current work aimed to explain
every detail. The goal was and still is to explain the principles.

We used Rayleigh waves measured on the vertical component. An
obvious question is, whether the Rayleigh waves measured on the
radial component behave the same. As a quick answer, we processed
the records on the horizontal component showing the results in
Fig. 15. Left-hand plot is the map of arrival-angle deviations at
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Figure 16. Left-hand panel is a copy of panel (f) from Fig. 8 showing 499 phase-velocity dispersion curves calculated for the low-velocity anomaly under the
CVL. Right-hand panel shows dispersion curves calculated for the high-velocity anomaly of the same size and location. Green envelopes and light blue PREM
curves are the same in both panels.

100 s period wave for the vertical component, the same as in Fig. 3
of the KSB2020 paper and similarly as in Fig. 4 of this paper
(where only the measurement at different periods are shown). The
records for the radial component were processed using exactly the
same parameters (filter widths, tapering length) as for the vertical
component. As the signal-to-noise ratio is generally worse for the
horizontal component, we needed to remove 13 stations (2.6 per
cent out of 499) with respect to what has been used for the vertical,
at which we could not clearly identify the fundamental mode. Even
the subarray measurement suffers by higher residuals in case of the
horizontal component, the similarity of the two maps in Fig. 15 is
obvious.

Our modelling shows that the difference between the dynamic
and structural velocity can easily reach −9.9 per cent (at 150 s)
or +4.8 per cent (at 130 s), see the envelopes in Fig. 8 differing
from the PREM. For the real data, this difference is probably even
larger. We cannot quantify it exactly not knowing the real structural
velocity. In any case, this discrepancy is much larger than any error
made by not knowing the arrival angle in case of the two-station
method, where we end up with a difference of 1–2 per cent. The
reason, why the two-station method sometimes gives us a velocity
even closer to the structural one than the array is that sometimes
the two-station profile can luckily coincide with the deviated arrival
angle measuring hence purely the dynamic velocity not affected by
any angular deviation. During the linear regression when using the
array, the arrival direction is always necessarily compromised by
fitting a plane into many measurements.

The heterogeneity found under the CVL in KSB2020 is a low-
velocity anomaly. The modelling in our current paper follows the
results of KSB2020 using the low-velocity anomaly as a source
of the diffraction. Fig. 8(f) and (h) presents the dispersion curves
directly modelled and measured by subarrays on synthetic time de-
lays. The dynamic velocities, in general, have the wobbles more
pronounced towards lower velocities. The cloud of 499 black wob-
bled dispersion curves deviates two times more down from the
structural PREM curve (light blue) by up to −9.9 per cent in con-
trast to the deviations towards higher velocities (up to +4.8 per cent,
see also the paragraph above). The question is, how this asymmetry
is related to the sign of the anomaly. Fig. 16 gives the answer. On the
left-hand panel, we show exactly the same curves as in Fig. 8, panel
(f). These are 499 phase-velocity dispersion curves directly mod-
elled using the low-velocity CVL anomaly results from KSB2020.
The right-hand panel in Fig. 16 shows again 499 curves, modelled

for a hypothetical anomaly with the opposite sign, meaning for a
high-velocity anomaly. All other parameters (width, strength, lo-
cation, background velocities) are kept the same. Green envelopes
and the light blue PREM curve from the left-hand panel are copied
to the right-hand panel for comparison. We see that the asymmetric
behaviour of the diffraction pattern produced by the high-velocity
anomaly with respect to the low-velocity anomaly, as discussed in
KSB2020 and shown in the Appendix C therein, is transformed
to asymmetric behaviour of the wobbles. While the high-velocity
anomaly wobbles which deviate to higher velocities are almost the
same as in the case of the wobbles from the low-velocity anomaly,
the wobbles towards low velocities do not deviate that much in case
of the high-velocity anomaly. In case of the high-velocity anomaly,
the wobbles are bit more symmetrically distributed around the struc-
tural PREM curve. This may also explain, why in Fig. 8(d), we again
see that the dispersion curves measured on real data deviate from
the PREM model much more towards lower values than towards
higher values. However, remember that the measurement on real
data still reflects the heterogeneous structure under the Alps, which
the synthetics do not.

The principal difference between the structural and dynamic
phase velocity was given by Wielandt (1993). As our work per-
fectly fits to his explanation of phase velocity being affected by
interference of different waves, we keep the terms ‘structural’ and
‘dynamic’ throughout our paper as well. Wielandt (1993) suggested
that the dynamic (measured) velocity could be recalculated to the
structural (desired) one by using the second spatial derivatives of
the amplitudes of the wavefield. Later, this approach was confirmed
by modelling in Bodin & Maupin (2008) and used by, for example
Liu & Holt (2015). Interestingly, the use of the amplitude informa-
tion works without knowing the specific cause of the interference.
Showing the possibility to reveal the actual cause of the interference
by modelling the wavefield propagating after a particular scatterer
in our current study opens the question, whether knowing the cause
could be used to recalculate the dynamic velocity to the struc-
tural one using other means then the amplitude distribution, which
is difficult to measure. The simplest approach would be obvious:
being able to model the wobbled dispersion curves, one can sub-
tract the wobbles from the measured curves attributing then the
‘cleaned’ velocity to the structural velocity. This, however, would
need more sophisticated modelling approach, as the wave propaga-
tion needs to be modelled in 3-D all the way from the anomaly to the
stations.
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7 C O N C LU S I O N

We have shown, how the fundamental mode Rayleigh waves prop-
agating from the South Atlantic Ocean and passing the Cameroon
Volcanic Line anomaly in the upper mantle beneath Central Africa
give rise to phase-velocity dispersion curves suffering by wobbles
when measured across the AlpArray network in Europe by two
different methods. The main point of our work is to introduce
the principle how the wobbles emerge due to the interference of
diffracted wavefield. The specific earthquake location and the par-
ticular anomaly causing the scattering of the waves is used here to
demonstrate the approach. Showing the results of the two-station
method as well as array measurement, we conclude that in prin-
ciple, they are both affected by the interference in the same way.
Even knowing the arrival angle is a valuable information, arrays do
not perform better than the two-station method when it comes to
estimating the structural velocity. The difference between the struc-
tural and dynamic velocity can be several times higher than the error
made by unknown arrival angle. We have also proposed a method
to model the dynamic dispersion curves of an interfering wavefield
propagating in 1-D structure. The similarity of the spatial pattern of
the wobbles as well as their position across the period range allow
to conclude that the main portion of the observed phase-velocity
deviations, which cannot be explained by the structure, is due to the
interference of the direct and scattered fundamental mode.

A C K N OW L E D G E M E N T S

We acknowledge financial support by the Austrian Science Fund
(FWF) through project P 26391–AlpArray Austria and P 30707–
AlpArray Austria 2. The Python Toolbox ObsPy by Beyreuther
et al. (2010) was used for data pre-processing. Maps were plotted
using Generic Mapping Tools by Wessel et al. (2013). Comments
and suggestions by Wolfgang Friederich and Éric Beucler helped to
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mundsson, Ó., Bach, T., Gregersen, S., Pedersen, H.A. & Hanka,
W., 2004. A first detailed look at the Greenland lithosphere and up-
per mantle, using Rayleigh wave tomography, Geophys. J. Int., 158,
267–286.

Darbyshire, F.A. & Lebedev, S., 2009. Rayleigh wave phase-velocity het-
erogeneity and multilayered azimuthal anisotropy of the Superior Craton,
Ontario, Geophys. J. Int., 176, 215–234.

Dean, E.A., 1986. The simultaneous smoothing of phase and group velocities
from multi-event surface wave data, Bull. seism. Soc. Am., 76(5), 1367–
1383.
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Kolı́nský, P. & Brokešová, J., 2007. The Western Bohemia uppermost crust
shear wave velocities from Love wave dispersion, J. Seismol., 11, 101–
120.
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A P P E N D I X : OV E RV I E W O F
D I S P E R S I O N - C U RV E M E A S U R E M E N T

In the Introduction section, we mentioned the most important pa-
pers regarding the main topics in development of the phase-velocity
measurement. Here, in the Appendix, we extend the overview to
more papers, commenting them as well as those mentioned already
in the Introduction and discussing, how they are related to our cur-
rent work. The Appendix follows the structure of the Introduction,
repeating the most important ideas and enriching them with de-
tails. There are hundreds of papers on the surface wave propagation
topic. We mention those showing and commenting phase-velocity
dispersion curves. An overview of literature about peculiarities of
surface wave propagation in general is given in the Introduction
to the KB2019 paper, where tens of additional references can be
found.

A1 Phase-velocity dispersion curves

Although Rayleigh (1885) predicted the surface waves without a
need of dispersion using only a half-space, Oldham (1900) already
noted that the observed velocity of the waves depends on their ‘size’
with bigger waves propagating faster. Love (1911) precisely defined
the dispersion, even using just one layer over the half-space and
saying that both surface-wave types (Rayleigh and Love) propagate
faster for longer waves. For Love waves, this holds true for arbitrary
number of layers with any properties (any structure): the phase ve-
locity of Love waves always monotonically increases with period.
For Rayleigh waves, the situation is more complicated. In certain
cases - like for the oceanic lithosphere (e.g. Cara 1979; James et al.
2014) - the phase velocity of Rayleigh waves can have a local mini-
mum. Comparison of oceanic Love and Rayleigh wave phase veloci-
ties is given by Nishimura & Forsyth (1989). Love waves have mono-
tonically increasing dispersion curves even in the oceans. Neverthe-
less, also Rayleigh wave phase-velocity dispersion curves are always
smooth, generally increasing with period with - at the most compli-
cated case - one minimum spanning a broad range from 30 to 70 s.
Wilson (1940) summarized several previous works and supported
the theory by observing and modelling group velocities of Love
waves propagating from the earthquake in the South Atlantic ocean.
Press (1956) added models of phase velocities for Rayleigh waves
in Southern California with monotonous dispersion curves. Oliver
(1962) summarized the knowledge showing modelled group- and
phase-velocity dispersion curves for both Love and Rayleigh waves.

A2 Early phase-velocity observations

Since then, the theory holds true, however, it is somewhat in contrast
with the observation. Evernden (1954) measured Rayleigh wave
phase velocities using the tripartite method in the San Francisco
Bay. The dispersion curve he presented is composed of separated

values, however, it shows non-random fluctuations. The same data
was later processed by Press (1957). Brune & Dorman (1963) used
a technique for measuring phase velocities, which later become
known as the ‘two-station’ method. The measured phase-velocity
dispersion curves for both Love and Rayleigh waves in the Canadian
shield show a significant ‘scatter’, as the authors called the appar-
ently random deviations of velocities for a given path. McEvilly
(1964) compared the tripartite method with the two-station method.
As the tripartite method produced significant scatter, he concluded
that the two-station method is more suitable for phase-velocity mea-
surements. This is an interesting conclusion, because the tripartite
method can be considered as a predecessor of array techniques,
which are considered superior to the two-station method nowadays.
In this paper, however, we have shown, why array measurements are
affected by the dynamic effects and that the bias is almost the same as
for the two-station measurement. As both latter studies showed only
sparse measurement in terms of periods, the scatter of the values
seemed to be random. Pilant & Knopoff (1964) already noted that
if two or more wave trains interfere, not only the amplitude shows
beats, but also the phases are affected by ‘fluctuations’. Their exam-
ples of dispersion curves are again given by scattered points only,
however, we can very clearly see the observed phase velocity vary-
ing around the smooth monotonic modelled curves. Knopoff et al.
(1966) continued in this work showing many other examples of dis-
persion curves affected by ‘phase irregularities’ and hence yielding
fluctuations. He also noted that these phase irregularities made it
almost impossible to compute a structure from the observation. One
of the best examples of dispersion curves affected by fluctuations
is given by Noponen (1966) who studied propagation of surface
waves from earthquakes in Greece through the Baltic Shield, see
Fig. 1 of our current paper. He concluded that these ‘disturbances’
or ‘oscillations’ cannot be real variations in velocity because of
their rapid changes and because they were smaller on longer paths.
His observation fits exactly to what we observe and explain today.
Dziewonski & Landisman (1970) discussed ‘small changes in the
derivative of the phase-velocity curve’ showing examples of long-
period (over 100 s) world-circling surface waves. Many examples
of dispersion curves with ‘irregularities’ (or ‘fluctuations’, or ‘os-
cillating phase-velocity curves’) were given by Weidner (1974) for
paths crossing the Atlantic Ocean.

Important to note is that all the above mentioned authors rec-
ognized that the measurement could not be explained by structural
models. Some of them already excluded the measurement errors as
a cause.

A3 Recent observations

Looking at papers published several decades later, we see that lit-
tle has changed. Plešinger et al. (1991) measured both Love and
Rayleigh wave dispersion using the two-station method across the
Bohemian Massif. Both types of dispersion show wobbled character.
Isse et al. (2003) used the two-station method for measurement of
Rayleigh waves crossing the Philippine Sea. Their single-path dis-
persion curves show again similar wobbles. Pedersen et al. (2003)
used the two-station method for the French Alps showing figures
with dispersion affected by the wobbles as well. Yoshida & Suet-
sugu (2004) obtained wobbled dispersion curves for oceanic paths.
Meier et al. (2004) presented wobbled dispersion curves for the
Mediterranean region, Kolı́nský et al. (2011) showed the same for
the Bohemian Massif (talking about ‘undulations’). Other exam-
ples, among many others, are Polat et al. (2012) showing examples
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of dispersion curves measured for the surface-wave tomography of
Ireland and Agius & Lebedev (2013) using the two-station method
in Tibet. Pedersen et al. (2015) showed, in addition, similar wobbles
in backazimuths of surface wave propagating across the LAPNET
network. Somroo et al. (2016) measured tens of thousand dispersion
curves across Europe and from the examples shown, they suffered
by the wobbles as well. Many studies nowadays, however, do not
show the dispersion curves in figures any more as the amount of data
processed and number of curves measured increases dramatically
in surface-wave tomography (Schaeffer & Lebedev 2013; Debayle
et al. 2016).

Wobbled dispersion curves are unlikely to be associated with any
particular measurement method. Brokešová & Málek (2016, 2018)
showed wobbled curves measured at a small-aperture array using
rotation-to-translation relation applied on earthquake record.

A4 Modelled, long-path and regionalized curves do not
have wobbles

Many papers show phase-velocity dispersion curves, which are
smooth and simple (monotonic, no wobbles). There are three rea-
sons for the curves to be simple.

Modelled dispersion curves

Phase-velocity dispersion curves calculated from a structural model
are always simple (no wobbles). Hundreds of papers show such
theoretical dispersion curves. Carder (1934) plotted phase-velocity
dispersion curves for Love waves in one layer giving examples for
different thicknesses. He pointed out the difference between oceanic
and continental propagation and he used the term ‘normal disper-
sion‘ for longer waves having higher speeds. Theoretical curves
for Rayleigh waves were then given by Wilson & Baykal (1948).
Evernden (1954) presented theoretical curves for fundamental and
higher modes of both Love and Rayleigh waves for both (simple)
continental and oceanic models. Simple modelled dispersion curves
are then presented in all studies up to now (e.g. Press 1956; Brune
et al. 1960 and 1961; Harkrider & Anderson 1962; Brune & Dorman
1963; McEvilly 1964; Harkrider 1970; Knopoff 1972; Priestley &
Brune 1978; Novotný & Vaněk 1983; Yoshida & Suetsugu 2004;
Yoshizawa & Kennett 2004; Ekström 2014; Lyu et al. 2017).

Long paths

In addition, there are also measured curves which look quite simple.
If we look at curves measured over single paths, meaning between
two stations or between the source and a station (single-station
method), simple observed curves are always found for long prop-
agation paths (thousands of kilometres, see e.g. Wilson & Baykal
1948; Brune et al. 1961; Gupta et al. 1977; Romanowicz 1982;
Levshin et al. 1992; Beucler et al. 2003; James et al. 2014; and
many others). A hint on wobbles being more pronounced when
the paths are shorter even when using the same earthquake for the
two-station measurement in the same region was already given by
Kolı́nský et al. (2011), who measured four short profiles and one
long profile crossing the Bohemian Massif.

Regionalized curves

The last category of simple dispersion curves relates again to curves,
which are ‘observed’, however, these are dispersion curves repre-
senting not single pure-path measurement, as above, but rather a

region or locality. Such dispersion curves can be obtained by av-
eraging or merging the pure-path curves, like by Baumont et al.
(2002) - network/array analysis and correction of the two-station
method, Yoshida & Suetsugu (2004) and references therein, Hwang
& Yu (2005) - 1-D array analysis, Agius & Lebedev (2013) - aver-
aging two-station measurements, Palomeras et al. (2014) - curves
regionalized from tomography and all the other tomographic stud-
ies, where the phase-velocity maps are used to compile ‘local’ dis-
persion curves characterizing the structure at the given node of
the tomography grid. As most of the tomographic papers do not
show the local dispersion curves, we mention just a few which do
- Villaseñor et al. (2001), Bruneton et al. (2004), Darbyshire et al.
(2004), Li et al. (2012), Salaün et al. (2012), Agius & Lebedev
(2013), O’Donnell et al. (2013) and Köhler et al. (2015). Interest-
ingly, in his review, Patton (1980) presented regionalized curves
which still show wobbles. Kolı́nský et al. (2014) obtained slightly
wobbled curve when merging only few array measurements and
Darbyshire et al. (2004) showed little wobbles in local dispersions
obtained from tomography. It is possible that if the ray coverage of
the tomography is not random and dense enough, the wobbles do
not disappear and still affect the tomography results.

Comparison

The difference between the modelled (regionalized, local) and ob-
served pure-path dispersion curves is best-seen in papers which give
the direct comparison of both. Starting with the Canadian Shield
study by Brune & Dorman (1963), continuing with Priestley &
Brune (1978), we can see similar discrepancy between the observed
and modelled curves in the recent papers as well (Pyle et al. 2010;
Bartzsch et al. 2011; Kolı́nský et al. 2011, 2014; Palomeras et al.
2014; Köhler et al. 2015; Brokešová & Málek 2016, 2018).

A5 Possible explanation

Since the first observations, seismologists tried to present an expla-
nation for the discrepancy between simple modelled and wobbled
observed curves. Brune & Dorman (1963) attributed the scatter to
the interference of Sa and Sn waves with the fundamental modes of
surface waves. They concluded that effects of lateral refraction are
probably small, however, they noted that lateral refraction may intro-
duce waves coming from different backazimuths. Pilant & Knopoff
(1964) described an interference noting that positive and negative
fluctuations occur equally. They described fluctuations based on
interference from multiple events and signals arriving over multi-
ple paths. They observed that if stations are in different azimuth
from the source, or in the same azimuths but different distances, the
record spectra differ significantly. Knopoff et al. (1966) attributed
the complex observation to interference of multipathed wave trains.
Knopoff & Mal (1967) described, how the back reflection from in-
clined Moho produces phase shifts. They modelled successfully a
wobbled dispersion. Thatcher & Brune (1969) discussed the mode
interference as a possible cause of anomalous apparent phase ve-
locities of Love waves. Since then, the possible explanations repeat
regularly in other papers. Dziewonski (1970) - lateral refraction,
Capon (1970) - multipathing and refraction at continental margins,
Knopoff et al. (1970) - scattering effects. A detailed investigation
was given by Weidner (1972, 1974): the observed wobbles were
attributed to interference caused by waves scattered from the Mid
Atlantic Ridge. He suggested that the scattering takes place along
the extent of the ridge excluding a single point scattering. He pre-
cisely excluded some other possible effects (higher modes, another
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earthquake, as suggested earlier, see above). The only option left
was that the interfering waves are the same Rayleigh waves, just
delayed. His explanation is very close to what we suggest. Already
at that time, he was more thinking about the waves being influenced
by a phase shift even propagating still as a single wavegroup, which
can be seen in contrast to what we nowadays consider as multi-
pathing, where two or more wavegroups are coming to the station
as distinct arrivals (Maupin 2011). In principle, it is the same phe-
nomenon, only the time scale differs. Pedersen (2006) studied the
effect of noise and non-plane waves on the phase velocities deter-
mined by the two-station method. She concluded that these effects
diminish for longer profiles. The errors due to the great-circle de-
viations were, however, independent of profile length. Ferreira &
Woodhouse (2007) investigated the influence of source, path and
receiver effects on the phase determination concluding that local
structure at the receiver is negligible. Phase anomalies were mostly
controlled by path effects. Luo et al. (2015) removed the interfer-
ence of higher modes of Love waves, however, even after that, the
resulting dispersion still contained wobbles.

A6 How to deal with the wobbles

Together with the attempts of explanation, researchers tried to re-
move the wobbles. Pilant & Knopoff (1964) used different methods
of smoothing taking advantage of the fact that positive and negative
fluctuations occurred equally in their observation. McEvilly (1964)
assumed a systematic error in the two-station measurement if the
waves propagate off the profile path. They decided to favour lower
velocities, if the measurement was scattered. Noponen (1966) used
smoothing of the phase-velocity wobbles and Dean (1986) sug-
gested simultaneous smoothing of phase and group curves. Similar
approach was used also by Mitra et al. (2006). Stange & Friederich
(1993) inverted simultaneously both amplitude and phase of the
wavefield. Darbyshire et al. (2004) averaged individual measure-
ment from the two-station method to robust curves representing the
interstation profile. This procedure was used as well by Barros et al.
(2008), Darbyshire & Lebedev (2009) and Legendre et al. (2014).
Forsyth & Li (2005) proposed the two-plane wave fit to the observe
wavefield, what helped to explain the observation better than single-
plane assumption. It was later used also by O’Donnell et al. (2013).
Pedersen et al. (2006) determined precisely backazimuths of propa-
gation calculating the mean phase velocity by averaging individual
measurements at the SVEKALAPKO array. Similar approach was
used also by Pedersen et al. (2013). Polat et al. (2012) noted that
diffraction and interference of the fundamental and higher modes

can bias inter-station dispersion measurements. They selected only
the smooth portions of the individual dispersion curves and aver-
aged many. Agius & Lebedev (2013) discussed the interference of
surface waves with S and multiple S waves. They found it important
especially for Love waves They again used averaging of the individ-
ual two-station measurements. Soomro et al. (2016) used complex
selection of acceptable phase-velocity measurements based on a
number of quality criteria including a smoothness requirement. One
thing to note here is that all these methods of removing the wobbles
are independent of the cause of the wobbles. Averaging and smooth-
ing only removes the wobbles without asking, why they are there.
Even the two-plane wave approach is only capable to fit the complex
wavefield better than single-plane wave, without explaining, why it
is so complex.

A7 Array phase-velocity measurement

It has been repeatedly assumed that array techniques (beamform-
ing) are capable to determine the phase velocity better than the
two-station method because it simultaneously searches for both the
magnitude of the velocity as well as the direction of propagation
(Baumont et al. 2002; Bourova et al. 2005; Kaviani et al. 2007; Bar-
ros et al. 2008; Lyu et al. 2017), summarized by Widmer-Schnidrig
& Laske (2007) and references therein. It is true that knowing the ar-
rival angle of incoming waves removes the bias caused by unknown
direction of propagation as in the case of the two-station method
(e.g. Magrini et al. 2020). However, significant wobbles remain at
the array-based dispersion curves showing that the non-plane wave
character (mentioned by all the papers referenced in the first sen-
tence of this paragraph) causes significantly more serious problem
than the unknown arrival angle. Affected dispersion curves were ob-
tained by Press (1956), McEvilly (1964) and Knopoff et al. (1967)
using the tripartite method (predecessor of array beamforming).
Wobbled dispersion curves are shown by Cotte et al. (2000, 2002)
using array technique, as well as by Pedersen et al. (2003) applying
beamforming within small arrays and comparing the results with
the two-station method. Although the effects of incoming wavefield
can be partially suppressed by averaging over many measurements
from earthquakes in different backazimuths similarly like in the
case of the two-station method, even array-based phase velocities
suffer by wobbles. Other examples of such results are given by
Hwang & Yu (2005), Kolı́nský et al. (2014), Lyu et al. (2017) and
Zhai et al. (2019). Barros et al. (2008) showed that smaller arrays
produce higher wobbles than bigger arrays. This effect corresponds
to the two-station method also yielding higher wobbles on shorter
interstation paths, as we have shown in our study.
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