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Background. Life stage transitions (e.g., settlement and recruitment), characterized by high mortality rates, act as 
selective bottlenecks for fi shes with a bipartite life cycle. Mortality at these stages is usually selective and potentially 
affected by larval history. This process is refl ected in an inconsistency in larval traits’ distribution between subsequ-
ent life stages (e.g., settlers and recruits) originating from the same reproductive season. Despite the importance of 
this issue only very scarce information is available about this aspect of Mediterranean fi shes life histories. 
Material and methods. Here we described settlement and investigated the match/mismatch of larval traits be-
tween settlers and recruits coming from the same reproductive season, using the white seabream, Diplodus sargus 
sargus (Linnaeus, 1758), as a model species along ~ 200 km of the Apulian Adriatic coast (south-western Adriatic 
Sea, Italy). Both microstructure and chemistry analyses were carried out on otoliths of settlers (n = 140) and 
recruits (n = 113).
Results. We highlighted a mismatch in two life traits, i.e., PLD (pelagic larval duration) and natal origin, between 
settlers and recruits. Recruits showed PLD longer than the maximum recorded for settlers, and a higher number 
of natal sources compared to settlers. Mismatch in PLD could suggest selective juvenile mortality related to PLD, 
and recruits with higher PLD potentially originated from the settlement tail (i.e., settled after the settlement peak). 
Conclusion. Our fi ndings can support hypotheses suggesting that 1) a fraction of juveniles are selectively elimi-
nated; 2) settlement tail could play a relevant role in replenishing local populations of white seabream.
Keywords: coastal fi sh, white seabream, Diplodus sargus sargus, pelagic larval duration, natal origin, settlement, 
otolith

INTRODUCTION
Life stage transitions can act as major demographic and 

selective bottlenecks for species with complex life cycles 
(Samhouri et al. 2009). For coastal fi shes encompassing a 
bipartite life cycle, with a larval planktonic stage followed 
by a juvenile-adult demersal stage, transition phases are 
represented by settlement (the shift from the planktonic 
to demersal habitat that usually coincides with the meta-
morphosis of larvae into juveniles) (Levin 1994) and the 
recruitment (the phase when juveniles join the adult frac-
tion of the population) (Forrester 1990). Both settlement 
and recruitment may critically infl uence fi sh population 
size and demography (Doherty and Fowler 1994, Carr and 
Syms 2006, Fontes et al. 2009), and ultimately shape the 
structure of fi sh assemblages (Shima 2001, Hixon et al. 
2002, Almany and Webster 2006).

Although life stage transitions only account for a small 
proportion of whole life span, these phases are usually 
characterized by high mortality rates (Doherty et al. 2004, 
Vigliola et al. 2007). Specifi cally, within the fi rst weeks 
after settlement individuals massively die (up to 90%), 
with some species showing about 60-percentage-point 
losses during the fi rst night after settlement (Planes et al. 
2009).

There is a widespread belief that overall mortality at 
this stage results from the combination of random mor-
tality and selective mortality (Good et al. 2001), with the 
contribution of each component depending on a multitude 
of ecological and environmental features (Sinclair et al. 
2002, Swain et al. 2007, Samhouri et al. 2009). Random 
mortality (the process of removal of individual fi sh that 
is not related to any life trait, with all fi sh displaying the 
same probability of dying) (Good et al. 2001) or selective 
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mortality (the removal of fi sh related to some life traits, 
with some fi sh that are more likely to die than others) 
may affect the number of individuals reaching the adult 
phase, as well as the phenotypes of those individuals (e.g., 
size, Gagliano et al. 2007, McCormick 2009, Planes et 
al. 2009). A large suite of papers, from both tropical and 
temperate areas, highlighted that post-settlement mortality 
mainly acts through a selective process (Gagliano et al. 
2007, McCormick 2009, Planes et al. 2009 and references 
therein). A number of larval life traits (e.g., size at hatch-
ing, larval growth rate, pelagic larval duration) has the po-
tential to determine which individuals have more chances 
to survive to the next life-history stage. Therefore, the sur-
vival rate at the post-settlement stage of many fi shes is not 
decoupled from prior life history and early life-traits from 
one life stage can ‘carry over’ to affect the fi tness of sub-
sequent developmental stages by driving a selective mor-
tality (Smith and Shima 2011). The result of this process is 
an inconsistency in larval life-traits’ distribution between 
specimens coming from the same reproductive season 
(i.e., the same annual cohort), but belonging to different 
life stages (e.g., larvae, settlers, recruits) (Smith and Shi-
ma 2011). We can distinguish three different patterns of 
this inconsistency, depending on the type of selection oc-
curring (see Brodie et al. 1995 for a detailed discussion). 
In brief, in case of directional selection (selection for high-
er or lower life-trait values, also named linear selection) 
we can highlight an inconsistency in mean values, when 
stabilizing selection (selection against extreme life-traits 
values) occurs a decrease in variance of life traits arises 
and in case of disruptive selection, that acts against the 
intermediate life traits, an increase in the variance of life 
traits arises (Brodie et al. 1995). Stabilizing and disruptive 
selections are known as non-linear selections.

To investigate this issue, the back-calculation of larval 
life traits (e.g., size at hatching, larval growth rate, pelagic 
larval duration) from otoliths represents a powerful tool 
to compare life traits’ distribution across life stages. This 
possibly enables to infer early life history traits potentially 
infl uencing juvenile survival (i.e., of those individuals that 
differ among life stages coming from the same annual co-
hort) (Searcy and Sponaugle 2001, Vigliola and Meekan 
2002, Raventos and Macpherson 2005, Jenkins and King 
2006).

Despite the relevance of this issue, only very few ob-
servations refer to the Mediterranean Sea and few evi-
dences exist about differences in early life traits between 
specimens at different life stages, coming from the same 
reproductive season (see Raventos and Macpherson 2005, 
Planes et al. 2009).

The aim of the presently reported study was therefore 
to describe the settlement event (in terms of temporal win-
dow) and then investigate the match/mismatch of larval 
life history traits among two life stages (i.e., settlers and 
recruits) coming from the same reproductive season by us-
ing the white seabream, Diplodus sargus sargus (Linnae-
us, 1758), as a model species. Specifi cally, we focus on pe-
lagic larval duration (i.e., the duration in days of the period 
between hatching and settlement, hereinafter PLD) and na-

tal origin (estimated through otolith chemistry) (Green et 
al. 2009). Here we consider PLD as a proxy describing the 
processes (e.g., larval growth) and phenotypes (e.g., site at 
settlement) related to larval history, potentially infl uenc-
ing individual performance and survival (Hamilton et al. 
2008). Therefore, for the sake of clarity, we will refer to 
the selection related to PLD to picture the comprehensive 
effect of larval history on settlers’ survival.

MATERIALS AND METHODS
Study area and species. This study was carried out along 
~ 200 km of the Apulian Adriatic coast (South-west-
ern Adriatic Sea, Italy), namely the stretch of coast 
comprised approximately between San Giorgio (Bari, 
41º8′20.30′′N, 16º49′5.08′′E) and Conca Specchiulla 
(Lecce, 40º14′39.84′′N, 18º27′8.15′′E).

The white seabream, Diplodus sargus sargus, was se-
lected as a model species because it is an ecologically (Gui-
detti 2006) and economically relevant coastal fi sh, for both 
professional and recreational fi shing (Lloret et al. 2008), 
and because a number of ecological and biological infor-
mation are available for this species in the investigated area.

The white seabream, that clearly responds to protec-
tion from fi shing by increasing in density and size (Gui-
detti 2006, Guidetti and Sala 2007, Di Franco et al. 2012a, 
2013), usually inhabits the littoral zone in shallow waters 
down to about 50 m (Tortonese 1965, Harmelin-Vivien 
et al. 1995). Adults produce eggs and larvae that develop 
in pelagic waters for a period ranging from 13 to 28 days 
(Macpherson and Raventos 2006, Di Franco and Guidetti 
2011, Di Franco et al. 2011) and that are able to disperse 
over hundreds of kilometres (Di Franco et al. 2012a, 2012b, 
Pujolar et al. 2013). Then larvae metamorphose and set-
tle at about 1 cm total length (TL) in shallow (about 2 m 
depth) coastal benthic habitats, mainly within small bays 
with mixed sand and rocky bottom (Tortonese 1965, Har-
melin-Vivien et al. 1995; see Bussotti and Guidetti 2011 for 
specifi  c evidence referred to the study area). Juveniles re-
cruit to the adult population when they reach approximately 
6–7 cm in size, ~ 5–6 months after settlement (Macpherson 
1998), dispersing from settlement to recruitment sites over 
up to tens of kilometres (Di Franco et al. 2012b).
Data collection. One hundred forty settlers of Diplodus 
sargus sargus (i.e., 1–1.5 cm TL) were collected between 
8 June and 15 June 2009, approximately 10–14 days af-
ter the settlement peak, occurred at the end of May–very 
beginning of June 2009 (Di Franco et al. 2013). Settlers 
were collected using a dip net at 14 sampling sites along 
the study area, with 10 settlers collected at each site. We 
did not collect settlers belonging to the ‘settlement tail’ 
(i.e., ending phase of the settlement period). Then, at be-
ginning of November 2009, approximately 5 months after 
settlement peak, 113 recruits of white seabream (i.e., 6–8 
cm TL) were caught by spearfi shing at 12 of the sampling 
sites where settlers were collected, because of the absence 
of recruits in the remaining two sites. At each site between 
6 and 10 recruits were collected. Each sampling site was 
separated by 1–8 km from the closest site. Sampling sites 
were spread along the entire study area (Fig. 1).
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One sagittal otolith was removed from each specimen 
(both settlers and recruits) and processed following stand-
ard procedures to assess: 
• PLD and settlement date by analysing otolith micro-

structure (Green et al. 2009; see Di Franco and Guidetti 
2011 for specifi c details; and 

• Homogeneity/heterogeneity of natal origin analysing oto-
lith core microchemical composition (Green et al. 2009); 
see Di Franco et al. (2012b) and Di Franco et al. (2014) 
for specifi c details about settings used in this analysis. 

No selection was made between left and right sagittal 
otolith of each specimen, because a preliminary analysis 
(Di Franco and Guidetti, personal observation) did not 
highlight any variability in PLD reading between the two 
sagittal otoliths of the specimens of Diplodus sargus sargus. 

In brief, each sagitta was mounted sulcus side up onto 
a glass slide and it was polished with 3 μm and 1 μm 
Imperial lapping fi lm to expose inner growth layers for 
analysis.

To estimate PLD and settlement dates, after polishing, 
we used a standard technique of analysis of daily rings (or 
growth increments) on otoliths (Green et al. 2009). Oto-
liths develop around a primordium, which forms during 
the embryonic development, and grow by apposition of 
daily rings. PLD can therefore be accurately assessed by 
counting the number of daily rings between the primordi-
um and the settlement mark (i.e., the fi rst major transition-
al point). Settlement date was back calculated in settlers 
by subtracting the number of juvenile rings (i.e., rings lo-
cated after the settlement mark) to the sampling date. The 
daily rings of each sagitta were read using a high-powered 
microscope (×400). Each otolith was read by three inde-
pendent readers, and only when the three were in agree-
ment the otolith was used on subsequent analyses.

To assess natal origin after polishing with lapping fi lm, 
sagittae were rinsed and sonicated for 10 min in ultra-pure 
water and then were analysed for the chemical compo-
sition of the core, by using ICP-MS coupled with laser 
ablation (LA-ICPMS) (see Green et al. 2009 for further 

details about the rationale behind otolith chemistry analy-
sis). We isolated the material associated with the core us-
ing three discrete vertical pits of 30 μm from the surface 
of the otolith through the visible core. The spike in the 
Mn : Ca ratio was used as an indicator of the core location 
(Ruttenberg et al. 2005) and therefore just one out of the 
three pits (the one showing at least 3-fold higher Mn : Ca 
concentration than surrounding material) was considered 
in subsequent analysis. An Mn : Ca spike could not be 
detected in about 9% (10 samples) of the core samples of 
recruits; these samples were excluded from further analy-
sis of natal origins.
Statistical analyses. We compared frequency distribu-
tions of PLD of recruits with frequency distributions of 
PLD of settlers to test for match/mismatch in this early life 
trait. PLD distributions (recruits versus settlers) were com-
pared using the non-parametric Kolmogorov–Smirnov 
two-sample test owing to its sensitivity to changes in loca-
tion, dispersion, and skewness of the distributions, while 
making no assumptions on the distribution of data (Sokal 
and Rohlf 2001). The signifi cance of all comparisons was 
based on an alpha-level of 0.05. We tested for potential 
differences in PLD of settlers and recruits by using one-
way PERMANOVA.

We estimated the intensity of linear selection (Si, total 
change in the mean phenotype between the two stages in-
vestigated) and nonlinear selection (Ci, total change in the 
variance of a trait within a generation after adjusting for 
directional selection) related to PLD following Gagliano 
et al. (2007).

Linear regression analysis (DISTLM) was used to 
assess the relations between the settlement dates and the 
PLD values.

Information about potential match/mismatch of natal 
origins was obtained determining the number of potential 
natal origins in recruits (assessing micro-chemical fi nger-
print of otolith core) and then comparing it (in the discus-
sion section) with the number of potential natal origins of 
settlers previously reported in Di Franco et al. (2012b).

To determine the number of potential natal origins of 
recruits, the core elemental concentrations of recruits, used 
as a proxy for identifying the existence of single or multi-
ple areas of origin, were analysed by cluster analysis. The 
similarity profi le permutation test (SIMPROF) procedure 
was used to determine which clusters were signifi cantly 
different at the 5% level (Clarke et al. 2008). We tested for 
multivariate dissimilarity in chemical fi ngerprint of indi-
viduals from each of the four major natal origins (see re-
sults) by using one-way PERMANOVA. Natal source was 
treated as a single factor with four levels corresponding 
to the four major natal sources identifi ed. Elemental/Ca 
ratios that contribute to the signifi cant differences among 
the major natal origins were identifi ed using similarity 
percentage (SIMPER).

We tested for potential differences in PLD of individ-
uals from different major natal origins by using one-way 
PERMANOVA. 

Statistical analyses were run using Primer 6 PER-
MANOVA+ software package.

40°26’ N

41°19’ N

16°10’ E 17°15’ E 18°40’ E

0 25 50 km
N

Apulia

Fig. 1. Study area; Sampling sites where both settlers and 
recruits of white seabream, Diplodus sargus sargus, 
were collected are indicated with white and black cir-
cles, while sampling sites where only settlers were col-
lected are indicated with “x”
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RESULTS
Settlement dates, assessed from otolith samples taken 

from settlers, ranged from 21 May to 10 June, covering a 
total of 21 days. About 65% of settlement dates occurred 
from 28 May to 1 June, this stint corresponding to the set-
tlement peak in 2009 (Fig. 2). No relation between set-
tlement date and PLD of settlers was observed (n = 140, 
pseudo-f: 1.51, P = 0.22, Fig. 3). The individuals that 
settled during the settlement peak displayed the highest 
variability in PLD with values ranging between 13 and 19 
days (Fig. 3).

On the whole settlers showed a PLD of 16.4 ± 0.1 
days (mean ± SE), ranging from 13 to 19 days, and re-
cruits showed a PLD of 17.8 ± 0.4 days, ranging from 13 
to 28 days (Fig. 4). A signifi cant difference was highlight-
ed in PLD values between settlers and recruits (one-way 
PERMANOVA, pseudo-f: 14.686; P < 0.0001). Recruits 
displayed a frequency distribution of PLD signifi cantly 
different from the one of settlers (Kolmogorov–Smirnov 
test, P < 0.001). PLD of 17 days, that represented the PLD 
modal class for settlers (36.4%), accounted only for 7.9% 
of recruits. The PLD modal class for recruits was 15 days, 
accounting for about 10% of recruits. About 36% of re-
cruits showed a PLD ≥ 20 days.

The intensities of linear and nonlinear selection related 
to PLD between settlers and recruits were respectively Si 
= 0.97 and Ci = 13.8.

SIMPROF analysis detected seven statistically differ-
ent groups based on the otolith core chemical composi-
tion of recruits, which possibly suggests the existence of 
seven different natal origins. Two groups were composed 
each by a single recruit (accounting on the whole for ~ 2% 
of total recruits), a group was composed by three recruits 
(3.22%), while the other 4 major groups accounted for the 
6.4%, 13.9%, 18.2%, and 55.9% of recruits.

The four major natal origins signifi cantly differed from 
each other in terms of their multivariate core elemental 
fi ngerprints (PERMANOVA P < 0.01). The Mg : Ca, Sr 
: Ca, and Zn : Ca ratios contributed most to the differen-
tiation of these four major groups (92%–99% of the total 
dissimilarity in pairwise comparisons, SIMPER analysis).

Considering PLD, no signifi cant difference was detected 
among the four major natal origins, with 16.3 ± 1.4 (mean ± 
SE), 18.1 ± 1.1, 17.8 ± 0.4, and 18.4 ± 1.3 days, respectively.

DISCUSSION
The presently reported study revealed a mismatch in 

two life traits (PLD and natal origin) between settlers and 
recruits of the white seabream Diplodus sargus sargus, in 
2009 reproductive season in SW Adriatic Sea. Specifi cal-
ly, a fraction of recruits showed PLD values longer than 
the maximum PLD recorded for settlers, and originated 
from more natal sources compared to the ones of settlers 
(7 for recruits vs. 3 for settlers, as showed in the presently 
reported study and in Di Franco et al. 2012b). 

Theoretically, the comparison between two subsequent 
life stages, indispensable to compare early life traits’ dis-
tribution and infer about selective mortality, would imply 
to consider a representative sample of each life stage for 
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the area investigated. In our comparison, we assumed that 
the settlers collected were a representative sample of the 
cohort that settled in the study area until the moment when 
collection of settlers has been done (i.e., shortly after the 
settlement peak). This implies that we did not sample any 
settler belonging to the ‘settlement tail’. Individuals that 
settle in the tail usually account for a minimal fraction of 
all settlers (see Vigliola et al. 1998, Planes et al. 2009, 
Fernandez-Jover et al. 2009 for evidence on Diplodus sar-
gus sargus). However, their contribution to populations’ 
replenishment may be relevant if their mortality rate is 
far lower than that of other settlers. Our results suggest 
that individuals settled after the settlement peak could be 
the ones (as observed on our sampled recruits) display-
ing a PLD longer than the maximum PLD recorded in our 
samples of settlers (accounting for more than 1/3 of all 
recruits), and originating from additional natal sources 
compared to the ones detected on samples of settlers and 
reported in Di Franco et al. (2012a). However this hypoth-
esis should be taken cautiously and further investigated by 
collecting individuals along the entire settlement period, 
including the ones belonging to the settlement tail.

The observed mismatch in PLD could be suggestive of 
a selective juvenile mortality related to PLD, mainly via 
disruptive selection (non-linear selection, sensu Brodie et 
al. 1995), chiefl y driving to an increase in PLD variance. 
This hypothesis about selective mortality related to PLD 
contrasts with the fi ndings concerning non-Mediterranean 
species (Gagliano et al. 2007). As far as Mediterranean 
fi shes are concerned, patterns are variable. The available 
results for Symphodus roissali (Risso, 1810) did not show 
any relation between mortality and PLD, while results for 
Symphodus ocellatus (Linnaeus, 1758) showed just an op-
posite pattern (Raventos and MacPherson 2005).

The higher survival of individuals with short and long 
PLD compared to those with intermediate PLD could be 
related to the potential correlation among PLD and size-
at-hatching, size-at-settlement, and growth rate. Some 
studies highlighted a negative correlation between PLD, 
size-at-hatching, and size-at-settlement (Raventos and 
Macpherson 2005). This would imply, in our case, that 
both smallest and largest settlers, in terms of size at set-
tlement, have higher survival than those displaying an in-
termediate size. It is generally thought that larger in size 
and faster-growing juvenile fi sh are more likely to survive, 
with mortality being directed towards smaller and slow-
er-growing fi sh. Smaller fi sh are more susceptible to star-
vation and predation: due to their lower social status and 
smaller size, in fact, they are often unable to successfully 
compete for food or shelters against predators (Good et 
al. 2001). Our hypothesis partially agrees with fi ndings of 
Planes et al. (2009) showing a higher survival of larger 
individuals and an overall decrease in size variability over 
time at post-settlement stage for Diplodus sargus sargus.

In the presently reported study we cannot exclude that 
recruits showing higher PLD and a different natal origin than 
settlers, originated outside our sampling area and then active-
ly dispersed within it at the post-settlement stage. Notwith-
standing the fact that this bias could not be totally excluded, 

Di Franco et al. (2012b) showed that only about the 7% of 
recruits collected along our study area are likely to originate 
from settlement sites not sampled. From this perspective, 
this point could be considered as a minor potential bias and 
possibly not able to fully explain the pattern we highlighted.

The evidence of a single settlement peak for this spe-
cies is in agreement with previous studies concerning the 
same fi sh (Vigliola et al. 1998, Planes et al. 2009, Fernan-
dez-Jover et al. 2009, Bussotti and Guidetti 2011).

Based on the mismatch highlighted in this study be-
tween settlers and recruits, we can envisage that indi-
viduals settling during the settlement-tail after the peak 
can represent a considerable amount (almost a third) of 
the individuals surviving until recruitment. Both recruits 
with PLD longer than the maximum reported for settlers 
and recruits with natal origins different from the three pre-
viously highlighted for settlers in 2009 (Di Franco et al. 
2012b) are likely to come from settlers belonging to the 
tail. This hypothesis, if validated by further studies, would 
be novel and interesting to shed light on post-settlement 
processes possibly shaping fi sh population dynamics.

In conclusion, the fi ndings of the presently reported 
study, showing a mismatch in early life traits among sub-
sequent life stages of a coastal fi sh, may contribute: 1) to 
unravel the processes possibly affecting selective mortali-
ty of juvenile fi sh and 2) to assess the potentially relevant 
role of white seabream settled during the settlement-tails 
in replenishing local populations, possibly accounting for 
a considerable percentage of individuals surviving until 
the recruitment phase.
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