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A scenario‑based approach for immediate 
post‑earthquake rockfall impact assessment

Abstract  Different approaches exist to describe the seismic trigger-
ing of rockfalls. Statistical approaches rely on the analysis of local 
terrain properties and their empirical correlation with observed 
rockfalls. Conversely, deterministic, or physically based approaches, 
rely on the modeling of individual trajectories of boulders set in 
motion by seismic shaking. They require different data and allow 
various interpretations and applications of their results. Here, we 
present a new method for earthquake-triggered rockfall scenario 
assessment adopting ground shaking estimates, produced in near 
real-time by a seismological monitoring network. Its key inputs 
are the locations of likely initiation points of rockfall trajectories, 
namely, rockfall sources, obtained by statistical analysis of digital 
topography. In the model, ground shaking maps corresponding 
to a specific earthquake suppress the probability of activation of 
sources at locations with low ground shaking while enhancing that 
in areas close to the epicenter. Rockfall trajectories are calculated 
from the probabilistic source map by three-dimensional kinematic 
modeling using the software STONE. We apply the method to the 
1976 MI = 6.5 Friuli earthquake, for which an inventory of seismi-
cally-triggered rockfalls exists. We suggest that using peak ground 
acceleration as a modulating parameter to suppress/enhance rock-
fall source probability, the model reasonably reproduces observa-
tions. Results allow a preliminary impact evaluation before field 
observations become available. We suggest that the framework may 
be suitable for rapid rockfall impact assessment as soon as ground-
shaking estimates (empirical or numerical models) are available 
after a seismic event.

Keywords  Ground shaking · Coseismic landslides · Susceptibility · 
Hazard · Multi-hazard

Introduction
The response of slopes to the action of strong ground shaking, such 
as the propagation of seismic waves generated by a large earth-
quake, can result in ground deformations and failures. Responses 
fall into two main categories: primary coseismic effects, e.g., when 
morphological changes associated with the earthquake (i.e., per-
manent deformations, faulting, and fracturing) are visible on the 
surface, and secondary coseismic effects, such as liquefaction and 
gravitational movements (Fan et al. 2019).

The CEDIT database, a comprehensive inventory of earthquake-
induced ground failures in Italy, contains data on ground cracks, 
surface faulting, and landslides for events with Mercalli intensity MI 
> VIII, which have occurred in the last millennium (Martino et al. 
2014). Caprari et al. (2018) reveals that ground effects are mainly 
rockfalls and earth/rockslides (45 %), followed by ground cracks (32 

%) and liquefaction (18 %). The literature on earthquake-induced 
landslides is conspicuous; a classic review (Keefer 1984) shows 
that rockfalls are among the most threatening type of landslide 
to human life.

Relevant, well-known examples are the Niigata Ken Chuetsu earth-
quake in 2004 (Mw 6.6), which triggered a vast number of landslides 
(Kieffer et al. 2006). The Northridge earthquake in 1994 (Mw 6.7), 
which induced thousands of landslides in a radius of about 25 km 
from the epicenter (Stewart et al. 1995); the Wenchuan earthquake of 
2008 (Mw 7.9), China, which induced numerous landslides, including 
shallow and deep-seated rockslides, rockfalls, debris slides, and debris 
flows (Chigira et al. 2010); and the Gorkha Earthquake of 2015 (Mw 
7.8), Nepal, which triggered more than 25,000 landslides (Roback et al. 
2018; Pokharel et al. 2021; Alvioli et al. 2022b). Additional examples are 
in Tanyaş et al. (2017) and references therein.

Earthquake-induced instability of natural slopes manifests in 
the form of (i) first-time landslides, characterized by ruptures 
induced by shear or traction stress along newly formed surfaces 
coinciding, in whole or in part, with stratigraphic discontinuities 
or levels of lower competence in inhomogeneous formations; (ii) 
reactivation of quiescent landslides, with movement along pre-
existing fracture surfaces; and (iii) resumption or acceleration of 
active landslides, along pre-existing discontinuities as well.

The response of a slope under ground shaking depends on many 
factors. For example, variability in the geological materials not only 
controls rock mass resistance, but it might also modify ground 
motion. Site-specific geometry and slope height are also relevant 
(Massey et al. 2017), providing mass potential energy and affecting 
rockfall trajectories. Nonetheless, knowledge of geology, topogra-
phy, and properties of the rock mass, although accurate, does not 
guarantee a full understanding of the mechanisms controlling the 
detachment of rock blocks from a slope, nor the accurate prediction 
of their origin location and evolution. A probabilistic framework 
for modeling earthquake-induced rockfall scenarios is a valid alter-
native. In one such framework, the location of sources, the trigger, 
and the propagation components of falling blocks are modeled 
statistically, with parameters tuned on the basis of observations.

Based on a world collection of earthquake-induced landslides 
(Tanyaş et  al. 2017), statistical approaches proved successful 
in accounting for the different predisposing factors and using 
ground motion as dynamical factors to determine the spatial 
likelihood of earthquake-induced landslides (Nowicki Jessee et al. 
2018; Tanyaş et al. 2019a, b), their magnitude (Tanyaş et al. 2019b), 
and the spatial distribution described by accurate inventories pre-
pared after an earthquake event (Dai et al. 2011; Harp et al. 2011; 
Tanyaş and Lombardo 2020; Pokharel et al. 2021).

1

http://crossmark.crossref.org/dialog/?doi=10.1007/s10346-023-02127-2&domain=pdf
http://orcid.org/0000-0003-1543-4349


Landslides 21 • (2024)

2 Original Paper

In this study, we propose a method for preparing rockfall sce-
narios induced by specific seismic events with a combination of 
statistical methods and a physical model. The method includes a 
few independent steps: (i) a probabilistic morphometric determina-
tion of potential rockfall sources (Alvioli et al. 2021; ii) an empirical 
estimate of ground motion using the ShakeMap software (Worden 
et al. 2020) to produce realistic ground motion maps (Akkar and 
Bommer 2007; Mori et al. 2022; iii) a novel approach to triggering of 
rockfall sources by ground shaking, previously applied with return-
time scenarios (Alvioli et al. 2022a, 2023); and (iv) a physical model 
to simulate rockfall trajectories.

We used the three-dimensional program STONE (Guzzetti et al. 
2002) to simulate block trajectories. We calibrated the model using 
data from the Friuli Venezia Giulia region (hereinafter FVG), North-
ern Italy, and particularly from the landslide inventory compiled by 
Govi (1977) after the 1976 Friuli earthquake (Ml 6.5). We show that, 
within the framework outlined above and summarized in the flow-
chart of Fig. 1, one can use heterogeneous data and combine tech-
niques for earthquake ground shaking estimation and landslide 
numerical modeling to obtain probabilistic maps for seismically-
induced rockfall runout. The proposed approach is thus suitable for 
rapid impact evaluation in civil protection applications, as it can be 
readily implemented after the occurrence of any major earthquake 
in almost real time, similarly to existing examples of near-real-time 
damage estimation to infrastructure (Tamaro et al. 2018; Poggi et al. 
2021). A comparable implementation was proposed by Valagussa et al. 
(2014), who used the model Hy-STONE in the same study area using 
frequency of occurrence and magnitude relative-frequency relations 
obtained from field data, with the aim of assessing the long-term 
rockfall hazard (rather than for post-event rapid impact evaluation).

The paper is organized as follows: the “Test–bed area and data” 
section lists and describes the data used in this work, including 
details of the 1976 earthquake in FVG. The “Methods” section 
describes the ideas behind the identification of rockfall sources on 

a digital topography and of the proposed seismic triggering mecha-
nism. Results are shown in the “Results” section and discussed in 
the “Discussion” section. The “Conclusions” section draws conclu-
sions of this study and gives hints for future work.

Test‑bed area and data
Italy is earthquake-prone, with many examples of landslides trig-
gered by earthquakes. Keefer (2002) explicitly mentions the 1973 
earthquake swarm in Calabria. Other relevant and well-docu-
mented events are Friuli (1976, Mw 6.4−6.1), with a prevalence of 
rock collapses and, secondarily, debris avalanches (Govi 1977; Civita 
et al. 1985); Irpinia (1980, Mw 6.9), with collapses and overturns in 
rock but also many of triggered or reactivated flows, flows and com-
plex landslides (D’Elia 2018); Umbria–Marche (1997, Mw 5.5−5.8), 
with a prevalence of collapses but numerous sliding phenomena, 
almost all reactivated ancient landslides (Prestininzi and Romeo 
2000); the 2016 central Apennines earthquake sequence (Amatrice 
and Norcia Earthquakes 2016), with numerous triggered rockfalls 
(Caprari et al. 2018; Santangelo et al. 2019, 2020).

This work focuses on the Friuli event, which occurred between 
May and September 1976, and consisted of a seismic sequence with 
two major earthquakes. The first event occurred on May 6th, with 
an intensity-derived magnitude MI 6.5 (Fig. 2), followed by thou-
sands of aftershocks, including two major shocks on September 
11th (MI 5.5) and September 15th (MI 6.0). The sequence caused 
almost 1000 casualties and was responsible for about 1000 land-
slides, mainly rockfalls (about 90 %), for a total mobilized volume 
of about 100,000 m 3 , documented in the landslide inventory by 
Govi (1977) (see Fig. 2). Other instability phenomena, such as slides 
or debris flow, were observed in small numbers (Govi 1977; Civita 
et al. 1985).

We assumed that the documented rockfalls from the Govi inven-
tory are related to the occurrence of the main shock, and thus we 
analyzed them statistically as a whole for model calibration. This 

Fig. 1   Summary of the proposed rapid assessment of earthquake-induced rockfalls. The seismic trigger can be coupled with an actual earth-
quake alert system (e.g., from the OGS seismic network) or any earthquake scenario, as in this work. Output impact evaluation is designed to 
be readily used in civil protection
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might lead to some overestimation of the initial seismically trig-
gered events, but it is conservative enough for the purpose of direct 
application to civil protection, already intrinsically accounting for 
the effects of possible aftershocks in the short term. Govi (1977) 
shows that the most important factors influencing the landslides at 
the same distance from the epicenter were weakening of the rocks 
by intense tectonic fracturing and slope steepness, controlled by 
structure and lithology.

The FVG region has a rich geological and geomorphological 
setting, dominated by sedimentary rocks (cf. Table 1). The results 
of metamorphic actions of a low degree are subordinated, only 
of interest in some Paleozoic formations. Among the sedimen-
tary deposits, terrigenous rocks (sandstones, argillites, siltstones, 
conglomerates, etc.) and carbonate rocks (limestones, dolomites) 
predominate. Evaporite rocks (gypsum, dolomitic breccias, carious 
dolomites, etc.) are subordinate, even if widespread in local belts. 
Evaporite are also relevant for the structural geomorphology and 
instability of the areas. Intrusive rocks are absent.

The region is characterized by a compressional seismotectonic 
regime, with E-W trending thrust systems, mostly south dipping, 
with a subordinate strike-slip component to the east. Seismicity, 
spatial, and kinematic characteristics of main seismogenic sources 
of the area are summarized in Slejko et al. (1999), Bressan et al. 
(2018), and Aoudia et al. (2000).

The epicenter of the May 6th earthquake is as reported in the 
parametric catalog of Italian earthquakes, CPTI15 (Rovida et al. 
2019), although its location is debated (e.g., Aoudia et al. (2000); cf. 
Fig. 2). The associated seismogenic fault trace was likely oriented 

E-W, as evidenced by the orientation of the nodal planes from focal 
mechanism solutions and agrees with the general orientation of 
active tectonic structures of the region. A southward dipping fault 
plane is in accordance with a blind thrust derived from seismic pro-
files and from the distribution of aftershocks (Peruzza et al. 2002; 
Poli et al. 2008; Galadini et al. 2005).

Data used in this work were the following:

•	 Digital elevation model (DEM) at 10-m resolution, TINITALY 
(Tarquini et al. 2007);

•	 Slope unit map extracted from the national map of Alvioli et al. 
(2020);

•	 National landslide inventory map IFFI (Trigila et al. 2010; ISPRA 
2018). Here, we extracted the subset of the national IFFI inven-
tory within the FVG region and further selected the features 
in the vector layer labeled as “falls.” These features helped 
in partially validating the results of simulations or rockfall 
runout with STONE in FVG. Figure 2 shows the inventory, with 
landslide polygons in red. We refer to Loche et al. (2022) for a 
description of the inventory.

•	 Landslide inventory map containing polygons of rockfalls 
triggered by the May–September sequence in 1976 (Govi 1977). 
Figure 2 shows the inventory, with landslide polygons in blue, 
prepared using photointerpretation supplemented by field 
surveys. The inventory is a key input to the method presented 
here: it served as calibration data to select the best dynamic (i.e., 
dependent on a specific earthquake event) localization method 
of rockfall sources.

•	 Geo-mechanical information based on a lithological map of 
Italy, scale 1:100,000 (Bucci et al. 2022). The map served to 
assign terrain parameters required by the software STONE. 
Table 1 lists the numerical values of such parameters, also used 
by Alvioli et al. (2021).

•	 Peak ground acceleration map corresponding to the 1976 earth-
quake in FVG generated using ShakeMap (Worden et al. 2020).

•	 Location of the epicenter of the earthquake of May 6th, 1976 
(Rovida et al. 2019).

•	 Roads and railways data extracted from OpenStreetMap 
(https://​www.​opens​treet​map.​org; Accessed September 22, 
2022). Licensed Data are released under the Open Data Com-
mons Open Database License (ODbL) by the OpenStreetMap 
Foundation (OSMF).

Methods

Data‑driven selection of sources
They key input of simulations with STONE requires identification 
of grid cells representing rockfall sources, in which the program sets 
initial points of three-dimensional trajectories. The overlap of all the 
simulated trajectories results in the overall runout, the key output 
we are interested in here. Source selection is a non-trivial step, and, 
in principle, it can be carried out by visual interpretation of ortho-
photos and manual mapping of potential sources. This approach is 
time-consuming, especially over large areas, and subjective (Guzzetti 
et al. 2004; Santangelo et al. 2019; Santangelo et al. 2020).

The traditional, straightforward way of selecting source areas for 
the model STONE, and similar physically-based approaches, is to set a 

Fig. 2   A shaded relief of the Friuli Venezia Giulia region, North-East 
of Italy. Blue polygons show the landslide (rockfall) inventory pre-
pared by Govi (1977) (a yellow star shows the location of the epi-
center of May 6, 1976); red polygons are a subset of the national 
IFFI catalog (Trigila et  al. 2010; ISPRA 2018) showing only rockfall 
features. Size of the polygons is exaggerated to allow resolving the 
smaller ones. The areas delimited by black lines are physiographic 
units from Guzzetti and Reichenbach (1994), namely, Central-Eastern 
Alps and Carso, containing the epicenter, and Veneto Plain, south 
from the epicenter (cf. Alvioli et al. 2020, 2021)

3

https://www.openstreetmap.org


Landslides 21 • (2024)

4 Original Paper

slope-angle threshold and consider as potential sources all of the grid cells 
with slope angles larger than the thresholds (Guzzetti et al. 2002; Matas 
et al. 2017; Torsello et al. 2022). This approach has limitations in that (i) 
different geomorphological settings and/or DEM resolutions may require 
different thresholds; (ii) it does not provide a probability of each grid cell 
to actually trigger a rockfall; (iii) it does not consider additional variables 
other than slope; and (iv) it neglects the different possible triggers.

The approach introduced by Alvioli et al. (2021), adopted here, 
addresses points (i) and (ii) above, while it does not yet include variables 
other than slope (Alvioli et al. 2022a; Pokharel et al. 2023). Alternative 
approaches exist (Rossi et al. 2021), which we did not adopt here. Point 
(iv), instead, is the object of the next section. Here, we briefly describe 
the method of Alvioli et al. (2021) to both locate sources and assign a 
probability of failure in a homogeneous way over a large area, on the 
10 m-resolution DEM of Italy TINITALY (Tarquini et al. 2007). Expert 
geomorphologists mapped potential sources in a conservative way to 
select locations where rockfalls may occur, mapping polygons where 
there is a combination of steep slope, bare rock, substantial curvature, 
and—where possible—apparent macroscopic fracturing state.

The method is data-driven in that it uses information from expert 
mapping of potential rockfall sources by photo interpretation in a 

few selected, representative slope units (Alvioli et al. 2020) in the area 
of interest. In each slope unit, expert mapping was carried over in a 
complete manner: geomorphologists mapped each and every potential 
source. Analysis of the distribution of slope angle values underneath 
the mapped polygons, with respect to slope angle distribution within 
the whole corresponding slope unit, provides a probability of pres-
ence for sources as a function of slope. Statistical generalization with a 
quantile regression procedure allows determination of the probability 
as a function of slope, which was taken of the following form:

where S is a grid cell slope angle and c a parameter. The proce-
dure was applied in 29 physiographic units in Italy (Guzzetti and 
Reichenbach 1994); in this work, we used the result of Alvioli et al. 
(2021) in two units overlapping with the FVG study area (values of 
the parameter c in Eq. (1)).

The physiographic units used here and in Alvioli et al. (2021) 
were slightly modified with respect to the original ones; Alvioli 
et al. (2020) show the modified map. The units relevant to this work 
are Central-Eastern Alps and Carso, containing the epicenter, and 

(1)Pstatic(S) = c
(
S

90

)4

,

Table 1   Numerical values of parameters used in STONE. “ID” and “Lithological Class” refer to classes L1–L19 identified by Bucci et al. (2022). 
The program performs a random sampling of the values in a ± 10 % range around the values shown here. The interested reader can find a 
figure of the lithological map in Alvioli et al. (2021) and Bucci et al. (2022), not shown here

ID Lithological class % Total % Slope Dynamic 
friction

Normal 
rest

Tangential 
restitution

L1 Anthropic deposits 0.1 0.0 0.65 35 55

L2 Alluvial, lacustrine, marine, eluvial, colluvial dep 43.0 9.0 0.80 15 40

L3 Coastal deposits, unrelated to fluvial processes 0.1 0.0 0.65 35 55

L4 Landslides 0.0 0.0 0.65 35 55

L5 Glacial deposits 4.8 7.3 0.65 35 55

L6 Loosely packed clastic deposits 7.3 8.7 0.35 45 55

L7 Consolidated clastic deposits 2.1 3.9 0.40 55 65

L8 Marl 0.9 1.6 0.40 55 65

L9 Carbonates-siliciclastic and marl sequence 2.6 4.5 0.35 60 70

L10 Chaotic rocks, mélange 0.0 0.0 0.35 45 55

L11 Flysch 7.3 11.9 0.40 55 65

L12 Carbonate Rocks 30.8 51.6 0.30 65 75

L13 Evaporites 0.1 0.1 0.35 45 55

L14 Pyroclastic rocks and ignimbrites 0.4 0.6 0.40 55 65

L15 Lava and basalts 0.0 0.1 0.30 65 75

L16 Intrusive igneous rocks 0.0 0.0 0.30 65 75

L17 Schists 0.4 0.7 0.35 60 70

L18 Non-schists 0.0 0.0 0.30 65 75

L19 Lakes, glaciers 0.0 0.0 0.95 10 10
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Veneto Plain, south from the epicenter (cf. Fig. 2). Figure 3 shows the 
probabilistic curves, corresponding to the selected physiographic 
units, with corresponding values of the parameter c in Eq. (1) (c 
= 4.32 for Central-Eastern Alps and Carso and c = 5.54 for Veneto 
Plain). Calculation of the function in Eq. (1) as a function of slope 
angle, using these parameters, provides a probabilistic map of 
potential rockfall sources in FVG (Figure 4). The map is “static” in 
that it is only dependent on topography, and it is considered here 
as the starting point to obtain a map of sources as a function of a 
specific seismic trigger, as described in the following.

Ground shaking model

The spatial distribution of ground motion associated with the May 
6th, 1976 event was assessed using an empirical ground motion 
prediction—the ShakeMap software (Worden et al. 2020). The tool 
allows for rapid assessment of the shaking distribution (either 
in terms of peak ground acceleration, peak ground velocity, 5 % 
damped response spectral acceleration at 0.1 and 0.3 s, and Arias 
intensity) over a large area, and it can also account for the effects of 

local geology (using V s30 from physiographic slope (Allen and Wald 
2009) and existing ground motion observations, where available). 
This last feature makes ShakeMap particularly suitable for rapid 
earthquake impact evaluation and in combination with seismologi-
cal monitoring networks, e.g., the SMINO Seismological Monitor-
ing Infrastructure of North-Eastern Italy managed by the Italian 
National Institute of Oceanography and Applied Geophysics (OGS; 
see Fig. 1) (Bragato et al. 2021). SMINO provides in almost real-time 
magnitude, hypocenter location, and ground motion estimates of 
any detected event (Poggi et al. 2021).

For this simulation, we selected the robust empirical ground 
motion prediction equation (GMPE) model of Akkar and Bommer 
(2007), which accounts for source geometry through the Joyner and 
Boore distance metrics (RJB). Figure 4 shows the spatial distribu-
tion of peak ground accelerations (PGA) in the epicenter area. This 
ground shaking map is used throughout this work to infer selective 
activation of subsets of previously obtained static rockfall sources 
using a triggering model described in the next section.

Earthquake trigger for rockfalls in STONE

In this section, we describe a probabilistic approach to localize 
possible rockfall sources triggered by a specific earthquake. We 
assume the probabilistic, “static” map of potential rockfall sources 
as a starting point (Eq. (1)). We introduce a simple mechanism to 
activate each grid cell with non-zero probability of failing, assum-
ing that the probability of activation is a function of PGA generated 
by seismic shaking. The proposed mechanism assumes that cells 
where PGA is null have zero probability of activation, and probabil-
ity increases up to a maximum value, corresponding to the point 
with maximum value of PGA.

The latter intuitive assumption is supported by the simple analy-
sis in Fig. 5a, showing the distribution of PGA values in the area 
of interest. The figure contains three histograms, namely, (i) the 
distribution of PGA values (grid cells) in the entire area (blue); (ii) 
the distribution of PGA values within the bounding box contain-
ing all of the landslide (rockfall) polygons in the inventory from 
Govi (1977) (yellow); the distribution of PGA values restricted to 
the landslide polygons (red). This suggests that the presence of 
landslides is strongly dependent on PGA values, with an increasing 
number of landslide cells for increasing values of PGA, supporting 
the approach adopted here.

The activation mechanism is implemented multiplying the static 
probability Pstatic(S) of Eq. (1) by a factor F varying in the interval 
[0, 1] and depending on the value of PGA in each grid cell. For the 
factor F, we propose two different functional dependencies on PGA, 
namely, a linear dependence:

and a non-linear dependence, using a functional form known as 
normalized tunable sigmoid function (NTSF), as follows:

(2)FL(PGA) =
PGA − PGAmin

PGAmax − PGAmin

,

(3)F
NTSF

(PGA) =
1

2
+

1

2

PGA� − k PGA�

k − 2 k |PGA�| + 1
,

Fig. 3   Analysis of the properties of expert mapped rockfall source 
areas, represented by green dots. NLQR 90 % is the method intro-
duced by Alvioli et al. (2021) and adopted in this work. The two red 
curves Eq. (1) are obtained with the values c = 4.32 (a) and c = 5.54 
(b), corresponding to the two different physiographic areas in FVG 
region, shown in Fig. 2
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where k is a parameter and PGA′ is itself a linear transformation of 
the PGA values into the interval [0, 1], defined as follows:

Both Eqs. (2) and (3) map values of PGA in the [0, 1] interval. The 
free parameter PGAcut > PGAmin in Eq. (4) introduces a mini-
mum activation threshold (different from the observed PGA

min
 ), 

below which failure probability is forced to null. In this study, we 
selected a single value k = −0.5 and investigated three different 

(4)PGA
� = 2

PGA − PGA
cut

PGA
max

− PGA
cut

− 1 .

values of PGA cutoffs (see Fig. 5b), namely, the actual minimum 
value PGAmin = 2.7 found in the area (labeled NTFS I in Fig. 5b), 
(PGAmax − PGAmin)∕4 = 9.25 (NTSF II), and (PGAmax − PGAmin)∕2 
= 15.67 (NTSF III). Values of PGA are given as percent of g, Earth’s 
acceleration of gravity.

The final, dynamic probability Pdynamic of a grid cell to represent 
a rockfall source is the product of the static probability and of the 
event-dependent activation factor F

�
(PGA) , where � stands either 

for L Eq. (2) or for NTSF Eq. (3) (Alvioli et al. 2022a, 2023). As a 
result, Pdynamic depends on both S and PGA as follows:

Fig. 4   The “static” rockfall source map, obtained only from morphometric properties in the whole FVG region, using Eq. (1). The contour lines 
in a show the values of PGA corresponding to the earthquake considered throughout this work, expressed in percent of the acceleration of 
gravity. In b, the detail within the dashed rectangle in a, one can resolve different values of probabilities, obtained from the red curves in 
Fig. 3, colorized with different shades of blue. Values in the raster map represent the number of simulated trajectories originating from each 
grid cell
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Curves for F
�
(PGA) corresponding to Eqs. (2) and (3), for the values 

of PGA that occurred during the Friuli Earthquake in 1976, are in 
Fig. 5b. The curve labeled as NTSF I reduces the relative probability 
of smaller values of PGA and enhances the probability of larger 
values, with respect to the linear function. On the other hand, using 
NTSF II or NTSF III would set to null the probability for PGA values 
below 9.25 % of g and 15.67 % of g, respectively.

Given that no robust physical justification exists to support neither 
the linear nor one of the three proposed NTSF functional models, we 
selected the most suitable option a posteriori, based on the fit between 
their prediction and data from the Govi (1977) inventory. Four inde-
pendent rockfall runout calculations were performed using the soft-
ware STONE, and the results were compared with observed rockfall 
runout using different classification methods (see “Results”).

We stress that Pdynamic(S,PGA) in Eq. (5) represents a model for 
the possibility of source presence. The model can be applied in any 

(5)Pdynamic(S,PGA) = Pstatic(S) F�(PGA) .

area in Italy or elsewhere for any seismic event for which the PGA 
map is known and calibration data exist. We expect the calibra-
tion procedure to be specific of the study area and less related to 
a specific event. This allows, in principle, to run a simulation with 
STONE a few hours after an earthquake takes place.

Rockfall runout calculation

The software STONE is a three-dimensional modeling tool for 
simulating rockfall trajectories (Guzzetti et al. 2002). It assumes 
point-like boulders and calculates individual trajectories starting 
from user-defined source points. Trajectories describe the paths 
of boulders, and simulation includes free falling, bouncing, and 
rolling on the ground, during which the falling mass loses kinetic 
energy. The end point of each trajectory is obtained when the 
velocity of a falling boulder reaches a value close to zero.

Inputs to the software, in addition to a digital elevation model 
needed to constrain the three-dimensional topography, are source 
points location and maps of numerical coefficients (Table 2), used 
to describe energy loss during bounces and rolling. During the 
simulation, STONE randomly samples the possible value of model 
parameters, such as the detachment angle, friction, and normal and 
tangential restitution, in a ±10 % range of the tabulated central 
value for each lithological intersected class, thus producing different 
trajectories along different paths for each simulation.

Outputs from the software are raster maps, containing the 
count of trajectories, maximum height, and maximum velocity 
and blocks, for each DEM grid cell; in this work, we only consid-
ered the first output. Values of the rockfall count usually vary 
wildly; for this reason, a classification method of the output ras-
ter is a crucial step to evaluate model predictions. For the sake of 
transparency, in this work, we considered different classification 
methods, namely, percentiles, head/tail breaks, and decades of 
values in the output maps. Results are presented as a function of 
the different classification methods.

We ascribe a probabilistic meaning to the different values in 
the raster map of sources in input to the model. Different values 
in the source map (up to 100, herein) correspond to a different 

Table 2   Comparison between counts of trajectories obtained by the 
method of Alvioli et al. (2021) on the whole FVG region and rockfalls 
in the IFFI catalog (Trigila et  al. 2010; ISPRA 2018). We used three 
classifications of the counter raster map. “Decades”: 1–10; 11–100; 
101–1000; 1001–10,000; more than 10,000; “head/tail breaks” refer to 
the well-known classification method; “percentiles” are 0 %–20 %–40 
%–60 %–80 %–100 % classes

Class Decades Head/tail breaks Percentiles

Null 8.9 % 8.9 % 8.9 %

1 – VL 2.7 % 61.5 % 6.0 %

2 – Lo 18.1 % 22.7 % 11.3 %

3 – Me 51.6 % 5.0 % 16.8 %

4 – Hi 17.9 % 1.4 % 26.1 %

5 – VH 0.9 % 0.5 % 30.9 %

Fig. 5   a Normalized histograms of PGA values on the whole study area 
(light blue) and restricted either to the rectangular region including 
landslides from the Govi (1977) inventory (BBox; yellow) or to the only 
grid cells with landslides (red). b Different methods used in this work 
to modulate the probability of each grid cell to represent a source of a 
simulated rockfall trajectory (Alvioli et al. 2021); Linear refers to a sim-
ple min-max rescaling of the PGA values to the [0, 1] interval Eq. (2) 
and NTSF I–II–III to different non-linear mappings Eq. (3)
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number of simulated trajectories, initiated from each source grid 
cell. Each trajectory evolves into a different path, thanks to the 
random generation of different parameters in the STONE code, 
namely, the detachment angle, friction, and normal and tangential 
restitution parameters. Each such parameter is changed up to 10 
% from its nominal value listed in Table 2 as a function of lithol-
ogy. That, eventually, results in a higher probability of trajectories 
crossing locations downhill from sources with higher probability 
of detachment and lower probability otherwise.

Impact evaluation

Earthquake-induced landslides can cause up to 11 % of fatali-
ties caused by earthquakes (Daniell et  al. 2017). Aside from 
direct damage, landslides and rockfalls can significantly impact 
the transportation networks (Xie et al. 2017; Alvioli et al. 2021; 
Pokharel et al. 2023), thus affecting commercial viability, disrupt-
ing traffic, and limiting access to emergency operators in the 
aftermath of an earthquake (Robinson et al. 2018). This leads 
to additional human and economic losses and exacerbate the 

Fig. 6   Rockfall runout simulated with STONE, using the “static” rockfall source map, of Fig. 4, classified with the head/tail breaks algorithm. It 
represents a susceptibility map in that it does not describe magnitude, nor it contains indications on the trigger and its expected temporal 
occurrence. Black polygons, filled in a and empty in the detail b, show the location of polygons classified as “falls” in the national inventory 
IFFI (Trigila et al. 2010; ISPRA 2018)

8



Landslides 21 • (2024)

9

impacts on affected population by isolating small but vulnerable 
villages. Nowicki Jessee et al. (2018) and Tanyaş et al. (2019a, b) 
proposed assessment of expected earthquake-induced landslides 
casualties at global scale based on empirical data and available 
ground shaking scenarios. An extension of that approach to 
assess expected damages for specific scenarios requires locally 
calibrated vulnerability curves for the main exposed assets (e.g., 
buildings, transportation infrastructures, bridges). Agliardi 
et al. (2009) proposed a method to obtain physical vulnerability 
functions for buildings based on empirical data. In the case of 
transportation corridors, the European project SYNER-G project 
(Systemic Seismic Vulnerability and Risk Analysis for Buildings, 
Lifeline Networks and Infrastructures Safety Gain; https://​cordis.​
europa.​eu/​proje​ct/​id/​244061) collects existing vulnerability 
curves which account for expected ground shaking and second-
ary effects Argyroudis and Kaynia (2015). In many near real-time 
applications, vulnerability/fragility is assumed to be maximum, 
in order to produce rapid and conservative results (Corominas 
et al. 2014). Following this approach, (Guzzetti et al. 2004) inves-
tigates the occurrence of potential rockfall damages on trans-
portation corridors based on the simulation of rockfall trajec-
tories. Robinson et al. (2018) proposed a near real-time damage 
assessment method based on a rapid but simplified approach and 
demonstrated the relevance of this information in the emergency 
response phase. However, the simulation of rockfall trajectories 
has not yet been applied to near real-time damage assessment 
of seismic-induced landslides. In this section, we propose an 
approach to support rapid assessment of earthquake-induced 
rockfall damages to infrastructure.

In this study, as in Alvioli et al. (2022a), potential damage is 
estimated combining the proposed dynamic trajectory map-
ping and the locations of exposed assets. For the purpose, rock-
fall trajectory count is first reclassified into 5 classes (ranging 
from very low to very high occurrence frequency), while expo-
sure data are extracted from OpenStreetMap, which provides 
georeferenced layers of buildings footprints and road paths. 
The exposure spatial resolution is comparable with the one of 
the trajectory count (10 m). Then, by overlapping the rockfall 
trajectory count layer and the exposure layer, we can identify 
those assets potentially in the rockfall path, assuming that each 
exposed asset is impacted by at least one rockfall trajectory.

Results
In this section, we present results of rockfall runout simulated using 
the three-dimensional model STONE with both “static” sources 
Pstatic(S) , independent of any specific trigger, Eq. (1), and “dynamic” 
sources Fdynamic(S,PGA) , depending on an earthquake trigger and 
obtained from the approximations for the PGA-probability map-
ping functions, Eq. (5).

Simulations with static sources

Figure 4 shows results from different approximations of the source 
map of rockfalls triggered by the earthquake of 1976 in FVG. This 
is the key input of the model STONE and can only be evaluated 
subjectively—we have no observed counterpart. The lack of it is 
one of the main obstacles we want to overcome. On the other hand, 
results of simulations with STONE, represented by rockfall runout 
corresponding to the different approximations for sources, can 
be compared with observed rockfalls. Available observations are 
of two kinds, shown in Fig. 2. A geomorphological inventory of 

Table 3   Comparison between counts of trajectories obtained by the 
method of Alvioli et al. (2021) on the whole FVG region and rockfalls 
in the Govi (1977) inventory. “Decades,” “head/tail breaks,” and “per-
centiles” as in Table 2

Class Decades Head/tail breaks Percentiles

Null 16.2 % 16.2 % 16.2 %

1 – VL 3.4 % 58.1 % 6.8 %

2 – Lo 15.8 % 18.0 % 9.5 %

3 – Me 47.8 % 4.4 % 15.4 %

4 – Hi 15.2 % 2.3 % 25.1 %

5 – VH 1.6 % 1.0 % 27.0 %

Table 4   Comparison between counts of trajectories and rockfalls 
in the Govi (1977) inventory. Sources were selected by either the 
method of Alvioli et al. (2021) Eq. (1) for “static” sources or with the 
“dynamic” method introduced here by Eq. (5) with a dependence on 
peak ground acceleration. Different approximations for F

�
(PGA) are 

linear dependence Eq. (2), and three different parameterizations for 
a normalized tunable sigmoid function (NTSF, Eq. (3) also shown in 
Fig. 5). Classes correspond to head/tail breaks for the upper part of 
the table, as in the second column of Tables 2 and 3, and to 0–20–
40–60–80–100 percentiles of each map in the lower part of the table, 
as in the third column of Tables 2 and 3

Class (Head/tail/
breaks)

Static Dynamic sources

Sources Linear NTSF I NTSF II NTSF III

Null 16.2 % 18.5 % 19.0 % 19.8 % 22.7 %

1 – Very low 58.1 % 35.7 % 37.5 % 40.7 % 41.0 %

2 – Low 18.0 % 30.0 % 27.6 % 27.8 % 25.6 %

3 – Medium 4.4 % 8.8 % 9.3 % 7.6 % 6.9 %

4 – High 2.3 % 3.7 % 3.9 % 2.3 % 2.1 %

5 – Very high 1.0 % 3.1 % 2.8 % 1.9 % 1.7 %

Non-null 83.8 % 81.4 % 81.1 % 78.0 % 77.2 %

Class (Percentiles) Static Dynamic sources

Sources Linear NTSF I NTSF II NTSF III

Null 16.2 % 18.5 % 19.0 % 19.8 % 22.7 %

1 – Very low 6.8 % 3.4 % 3.4 % 3.8 % 3.7 %

2 – Low 9.5 % 5.1 % 6.0 % 6.5 % 5.7 %

3 – Medium 15.4 % 8.0 % 8.6 % 10.0 % 10.4 %

4 – High 25.1 % 17.9 % 18.3 % 18.7 % 20.5 %

5 – Very high 27.0 % 47.0 % 44.8 % 41.3 % 36.9 %

Non-null 83.8 % 81.4 % 81.1 % 78.0 % 77.2 %
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rockfalls in FVG, extracted from the IFFI inventory (“falls”), and 
the event inventory compiled after the 1976 earthquake.

In the static case, the comparison is between IFFI polygons and 
the modeled runout obtained from static sources. This is the map of 
sources obtained from statistical generalization of expert-mapped 
potential sources, i.e., independent of any trigger; Fig. 6 shows the 
corresponding results of STONE. Even if this is not the main focus 
of this work, we still list a few numerical results from the compari-
son with IFFI. The polygonal inventory contains 666 rockfalls in 
FVG, of which 604 overlap with the predicted runout, and 62 do not. 
Percentages of overlap between IFFI and STONE predicted trajecto-
ries are listed in Table 2. For the sake of completeness, we calculated 
percentages for the overlap of runout from static sources and the 
earthquake-induced rockfalls of Govi (1977); results are listed in 
Table 3. In this case, misses (i.e., false negatives) are substantially 
larger than in the IFFI comparison.

Results in Tables 3 and 4 are given for three different runout clas-
sification methods: “decades” refers to five classes delimited by powers 
of 10; “head/tail breaks” corresponds to this well-known classification 
method; “percentiles” corresponds to classes delimited by the 20th, 40th, 
60th, and 80th percentiles of the distribution of values in each map. We 
stress that the head/tail breaks method is particularly suited for highly 
asymmetrical distributions, as the ones we are dealing with, here, given 
that maps of trajectories contain the vast majority of very small values 
and an increasingly smaller number of grid cells with many occur-
rences (number of simulated trajectories crossing the cell).

Simulations with dynamic sources

The earthquake-induced landslide inventory from Govi (1977) 
should be linked to the PGA map for that event. Comparison of 
the inventory and the runout results obtained from the different 
approximations allows to determine which one produces a better 
trigger for activating static sources; in other words, a satisfactory 
model Pdynamic(S,PGA) Eq. (5) for a dynamic trigger for earthquake-
induced rockfalls.

The model Pdynamic(S,PGA) allowed preparing different source 
maps, using a damping function F

�
(PGA) either in linear form Eq. (2) 

or in the form of a sigmoid with different parameters k and PGAmin 
Eq. (3). The corresponding source maps are in Fig. 7a–d. The figures 
suggest a dependence of the suppression factor upon PGA; the static 
source map, previously shown in Fig. 4, is now vanishing for values 
of PGA approaching zero. The values of the dynamic sources peak at 
PGAmax , for all of the approximations, by construction.

The “counter” maps resulting from simulations, i.e., raster maps 
whose values report the number of trajectories crossing each grid 
cells, are in Figs. 8a–d and 9a–d, in areas at different distance from 
the epicenter, and at two different zoom levels. As in the case for the 
sources in the previous figure, the different dependence of rockfall 
runout upon the values of PGA, in the four different approxima-
tions, is manifest from a visual perspective.

Numerical results about the comparison of the inventory from the 
event in 1976 and different approximations for the dynamic sources are 

Fig. 7   The different approximations for event-dependent rockfall source maps, proposed in this work, obtained from Eq. (5), where � stands 
either for L (linear, a) Eq. (2) or for NTSF (b–d) Eq. (3). The raster of the sources (white), as well as the observed rockfalls (blue), were slightly 
exaggerated for better visibility. The corresponding runout simulated with STONE is shown in Fig. 8, within the area in the blue dashed rec-
tangle, and in Fig. 9, for the red rectangle
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Fig. 8   Rockfall runout simulated with STONE initialized with the different approximations for sources, Pdynamic(S, PGA) , shown in Fig. 7. Here, 
we show details in the area within the rectangle of the previous figure. Blue polygons represent the inventory prepared by Govi (1977) after 
the earthquake corresponding to the PGA contours shown in the figure. Numerical values describing the agreement between simulations 
and observed rockfalls are listed in Table 4

Fig. 9   As in Fig. 8, but for the area delimited by the red rectangle in Fig. 7
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listed in Table 4. The table lists results for two different runout classifica-
tion methods, namely, the head/tail breaks and percentile methods. We 
used these two methods as they provided extreme cases, in previous 
comparisons with observations (Tables 2 and 3). Results suggest that for 
decreasing spatial extent of the source map (maximum for linear and 
minimum for NTSF III), the overlap between observed landslides and 
simulated runout decrease, consistently for both classification methods. 
Further comments are in the “Discussion” section.

Example of impact evaluation

In this section, we describe results obtained by overlapping the 
rockfall trajectory count layer and the exposure layer (cf. “Impact 
evaluation”). The application of the proposed methodology to the 
1976 FVG earthquake scenario highlights that such an event, on 
the current transportation network, would potentially disrupt 
more than 150 km of roads and 12 km of railway, while damaging 
more than 5000 buildings (Table 5). Under the considered scenario, 
both the Alpe Adria highway and the primary road SS13 would be 
affected by many rockfalls in the upper Tagliamento Valley. The 
potential disruption of highway and primary roads is particularly 
relevant and can affect the activities of emergency managers and 
local communities. In addition, damages may occur to many build-
ings and secondary or tertiary roads located in mountain areas. On 
top of that, buildings might be hit by rockfalls in villages with docu-
mented damages caused by the 1976 earthquake (e.g., Vito D’Asio) 
or with known rockfall hazard concerns (e.g., Portis, relocated after 
the 1976 seismic sequence).

Discussion
The rockfall source maps used for this work were defined as “static” 
Eq. (1) and “dynamic” Eq. (5). The former is simply an extension to 
the whole of Italy of the data-driven method by Alvioli et al. (2021), 
while the latter is new to this work and aims at introducing an 
existing event trigger. A similar approach was introduced by Alvioli 
et al. (2022a) and applied all over Italy by Alvioli et al. (2023); in that 
case, though, only Eq. (2) was used (and non-linear factors were not 
considered, as in Eq. (3)). Moreover, Alvioli et al. (2023) calibrated 
the the limits PGAmin and PGAmax against scenarios with specific 

return times, unlike in here. The source maps developed herein link 
a specific event to a specific STONE output. Optimization of the 
model of Eq. (5) is new to this work and represents a further step 
for the rapid assessment of earthquake-induced rockfall hazard.

We first initialized STONE using full “static” sources and inves-
tigated different classification strategies for the results. In fact, 
the values in the main raster map produced by the model are the 
number of trajectories crossing a given grid cell; more precisely, 
they report about the locations in which the trajectories hit the 
ground—by bouncing or rolling. Figure 6 shows the output of this 
run. Values in the output maps have a huge variation range, because 
we simulated up to a hundred trajectories from each source. This 
results in trajectory counts ranging from unity to a few tens of 
thousands, with a distribution skewed towards small values. The 
results summarized in Table 2 show the difference in classification 
using different methods, considering the IFFI inventory for rock-
falls in FVG. Classes based on head/tail breaks and percentiles show 
two extreme cases; in the former, most grid cells in IFFI polygons 
are in the very low class, while in the latter, the very high class 
contains most. The “decades” method produced an intermediate 
picture, where most of the values were in the medium class. Table 3 
shows corresponding results for the inventory compiled after the 
1976 earthquake; comments are practically the same, though the 
percentage of misses (false negatives) is double that in the case 
of IFFI.

Given the large differences between results using the three clas-
sification methods shown in the tables, we examined more in depth  
the distributions of trajectory count values for one specific case. We 
considered the count map resulting from STONE using the “static” 
map of sources. The map contains 10,028,244 non-null cells, with 
maximum value 40,746; 9 % of the cells have value 1, and 25 % of 
them have values smaller than 10. The inset in Fig. 10 shows a his-
togram of the normalized frequency values, spanning seven order 
of magnitudes. The main plot in the figure, instead, shows boxplots 
as follows. The black whiskers correspond to the same distribution 
of the inset, with outliers removed, for they would make the figure 
unreadable as they represent the vast majority of values. This is also 
true for the remaining whiskers, which show distributions within 
each class (1–5), for the three classification methods described 
herein. One should appreciate that the percentile method is not a 

Table 5   Impact assessment of rockfalls on infrastructure, based on the scenario simulated in this work, the 1976 earthquake. Figures for 
buildings represent a count; any other result represents a length in kilometers. The classification of roads is from OpenStreetMap. For road 
bridges, the total affected length refers to the overall length on the different road types

Exposed asset Asset type Very low Low Medium High Very high

Buildings – 5,046 141 6 0 0

Roads Motorway 25.8 0.5 0.0 0.0 0.0

– Primary 23.0 1.8 0.1 0.0 0.0

– Secondary 67.3 7.6 0.9 0.3 0.1

– Tertiary 65.0 5.2 0.6 0.1 0.0

Railways Railway 12.1 0.0 0.0 0.0 0.0

Bridge Road bridge 12.2 0.7 0.2 0.1 0.0

– Railway bridge 1.0 0.0 0.0 0.0 0.0
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satisfactory one, nor is the decades method, for a distribution so 
skewed as shown in the inset. In fact, all of the five whiskers for the 
percentiles method show similar content; in the case of the decades 
method, this is still true for the first three classes. Whiskers for 
the head/tail method, instead, show that the five classes are well 
distinguished from each other. We suggest that this classification is 
better suited for a skewed distribution. We do not show maps color-
ized with the three methods because they are not really informative 
and it would be difficult to visually show the effect discussed here.

Figure 6b shows a detail of the results for the static case in a 
small area. This was chosen in an area with few records in the IFFI 
inventory. The figure shows that most of areas predicted with non-
null, and even high and very high susceptibility, do not find cor-
respondence in the inventory. Besides the fact that the inventory 
may not be complete in that area (Loche et al. 2022), or that new 
rockfalls can still occur where they had not occurred before, we 
stress a trivial but important fact here. The model STONE initiated 
with sources based on morphometric arguments but otherwise 
independent of any trigger may substantially overestimate rockfall 
susceptibility in specific areas. Such sources result from extrapola-
tion of observations (morphometric properties) in a few spots to a 
substantially larger area. Figure 6 shows that enhancing/damping 
static sources using specific triggers, as the seismic trigger intro-
duced in this work, could provide much more reliable predictions. 
On the other hand, observed landslides that have no match in the 
predicted susceptibility map cannot be improved using a specific 
trigger; the dynamic source map is always a spatial subset of the 
static map, though with different probability values.

Optimization of dynamic sources requires assessment of 
the agreement between simulated STONE runout and rockfalls 
observed after the earthquake under investigation (Govi 1977). 
Considering different approximations for the F

�
(PGA) function, 

Eqs. (2) and (3) plotted in Fig. 5b, we obtained results shown in 

Fig. 7 (sources) and Figs. 8 and 9 (details of the runout). In the 
figures, contours show PGA values, and a star shows the quake’s 
epicenter. By inference, sources are null where PGA values approach 
zero; the damping factor is less important for increasing values, up 
to the maximum where F

�
(PGA) = 1 and the model earthquake-

induced sources are identical to the static sources. The damping is 
different in the linear and non-linear approximations; the figures 
suggest that the observed rockfalls have different degrees of agree-
ment with the model runout in the four cases. Agreement is quanti-
fied in Table 4; the values in the table should allow one to single out 
the best approximation for the F

�
(PGA) damping factor.

One may use different strategies to select a good match, though. 
First, Table 4 lists results for two classification methods, given the large 
differences, as discussed above; we considered only the two extreme 
cases, head/tail breaks and percentiles. Analyzing the numerical results, 
one may follow different strategies to select the dynamic sources pro-
viding better match. The number of misses increases consistently 
from Linear to NTSF III—again, by inference, because the source map 
“shrinks” as we move left to right in the table. The percent variation of 
“non-null” from left to right is smaller between linear and NTSF I (0.37 
%) than other changes (static to linear: 2.86%; NTSF I to NTSF II: 3.82 
%; NTSF II to NTSF III: 1.03 %), which could suggest NTSF I as best 
match. Looking at the content of individual classes, as already noted, the 
percentiles classification method accommodates most of the values in 
class 5, VH, and the opposite for head/tail breaks. However, moving from 
left (static/linear) to right (NTSF III), the trend is not always monotonic. 
In fact, in the head/tail breaks method, there is a maximum in NTSF I 
for classes 3 and 4, in linear for classes 2 and 5, and in static for class 1. 
In the percentiles method, the maximum is always for static, except for 
linear being the class 5 maximum; because of this behavior, we deem 
this classification method ineffective. We believe the NTSF I provides an 
overall better match, with smallest true positives percentage variation 
from linear and the largest true positives percentage variation going 
to NTSF II. Moreover, individual classes also seem to provide a more 
consistent split of the distribution of true positives.

An alternative/additional way to determine a good match may 
be to consider a full confusion matrix determination of observed/
predicted positives/negatives. However, we note that the large num-
ber of false positives and true negatives (of the order of many mil-
lions, in contrast with a few thousands for false negatives and true  
positives) could unbalance the confusion matrix, and we preferred 
not to follow that strategy. Nevertheless, for the sake of complete-
ness, we report results of a standard training/validation procedure.

We split the landslides data into a training sample (70 % of the 
landslides, selected randomly) and a validation sample (the remain-
ing 30 %), repeating the random selection ten times. For each selec-
tion, we calculated the true positive rate, TPR = TP/(TP + FN), 
and true negative rate, TNR = TN/(TN + FP), where T, F, P, and N 
stand for true, false, positives and negatives, respectively. For all of 
the selections, and within the numerical variability across differ-
ent selections, we found monotonic decrease (increase) of TPR (of 
TNR) going from the linear to the NTSF I–III. The large numbers 
representing TN and FP values make TNR less relevant in our case. 
In this view, the best result would be the linear approximation, and 
validation consists in calculating TPR and TNR for the only linear 
approximation, using the 30 % landslides that did not enter the 

Fig. 10   The distribution of rockfall trajectory count values in the 
map obtained from “static” sources and used for the comparison 
in Table  2. The inset shows the normalized frequency. The black 
whisker in the boxplot also refers to the distribution in the inset (out-
liers always removed). The colored whisker corresponds in each class 
(1–5) to the distributions obtained in the three classification meth-
ods considered in this work
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previous analysis, for each random selection. Numerical results are 
in Table 6. As this analysis does not distinguish classes, the classi-
fication strategy is irrelevant here. We still consider this procedure 
less informative than the assessment of Table 4.

Eventually, we stress that we did not aim at a finer determina-
tion of the parameters of the NTSF approximation, nor to experi-
ment with different functional forms. A finer determination would  
probably require more than one example of an earthquake inducing 
rockfalls to obtain a more robust result, and that may be performed 
elsewhere for historical events in Italy and for additional scenarios.

Conclusions
This work implemented an event-based earthquake trigger for 
seismically induced rockfalls within a three-dimensional physi-
cally based models. The traditional method, common to different 
existing models (Guzzetti et al. 2002; Frattini et al. 2008; Matas et al. 
2017; Dorren et al. 2022), considers a given set of locations as pos-
sible block detachment points and calculates the geometrical extent 
of rockfall trajectories on the downslope topography.

The typical input source map is a static one; simulations initi-
ated with such input data provide a spatially distributed likelihood 
of rockfall occurrence. A full assessment of rockfall hazard requires 
the joint knowledge of the magnitude of rockfalls and temporal fre-
quency, return times, or explicit dependence on specific triggering 
events. Previous work, by a few of us, considered different spatial 
probabilities for the source map, instead of a uniform probability 
(Alvioli et al. 2021); recent developments using the same 3D model 
include a seismic trigger, considering scenario-like shake maps 
with different return times (Alvioli et al. 2023).

Here, we introduced fully dynamic source maps by calibrating a trig-
gering mechanism on both the shake map and the observed rockfalls. 
Calibration concerned the parameters of a function used to map peak 
ground acceleration values into a damping factor for morphological, 
static sources. The damping function was either a linear mapping or a 
parametric sigmoid. An in-depth investigation and calibration of the 
damping function may also consider more refined estimates of the seis-
mic ground shaking, which should account for topography and soil 
type, among the others, and can be a matter for future research.

Results of simulations with STONE, a three-dimensional rockfall 
runout model, support the following conclusions for the simulations 
in the area of 1976 earthquake, in the FVG region, North-Eastern Italy:

•	 Rockfall runout obtained with static sources showed a reason-
able match (8.9 % false negatives) with the relevant subset of the 
national polygonal inventory IFFI, restricted to “falls”; match 
with the inventory prepared after the 1976 earthquake event 
was poorer (16.2 % false negatives).

•	 We deem the head/tail breaks method as the most suitable classifi-
cation method for the trajectory count output of the model STONE.

•	 Introduction of a dynamic trigger, driven by the peak ground 
acceleration associated with a specific seismic event, effectively 
linked the event to a specific set of sources and corresponding 
simulated runout.

•	 Simulations with different functional forms of a damping func-
tion, F

�
(PGA) , allowed calibration of the parameters of the func-

tion itself against observed rockfalls; our analysis favored the 
NTSF I version, with PGAmin corresponding to the minimum 
existing PGA and k = -0.5 (cf. Eq. (3) and Table 4).

The conclusions above deserve a few additional remarks. Results 
from the dynamic map cannot be better than those from the static 
map—the number of false negatives does not decrease—because 
the triggering factor of Eq. (5) only damps the static sources, but no 
new sources are introduced. On the other hand, the balance between 
different classes is changed, due to different values of probability in 
corresponding static and the active dynamic grid cells. This calls for 
further improvements of the static probabilistic map, here motivated 
only by morphometric arguments, though based on statistical gen-
eralization of expert mapping.

We stress that our approach does not consider the expected 
magnitude of the rockfalls, necessary for a full assessment of haz-
ard; this would amount to implementing blocks of different sizes 
in the code. We are working on an effective method to cope with 
different sizes, without the need to modify the code, as we did 
here for the triggering mechanism. Nevertheless, we considered 
an example impact assessment, calculating the overlap between 
the existing infrastructure and the model output, in the simulated 
scenario. This is a preliminary example of the outcome one would 
obtain in a real-time application of the framework proposed here.

The automation of this framework in almost real time would sup-
port the rapid assessment of expected damages caused by rockfalls 
induced by a seismic event in a study area, which is paramount for 
first respondents and emergency managers after a seismic event. The 
potential implications for emergency management will be explored in 
future work using more sophisticated approaches for both landslides 
and exposure modeling, such as traffic and social exposure data.
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Table 6   A simulation of training/validation procedure, considering 
landslide data as truth and the full model runout in the four approxi-
mations discussed in this work. The negligible variation in TNR is 
given by the large numbers representing TN and FP cases

Data 
partition

Model TPR TNR TNR-TPR

Training Linear 0.811 ± 0.016 0.931 ± 0.00 0.121 ± 0.016

NTSF I 0.806 ± 0.016 0.962 ± 0.00 0.157 ± 0.016

NTSF II 0.798 ± 0.018 0.980 ± 0.00 0.181 ± 0.018

NTSF III 0.765 ± 0.020 0.986 ± 0.00 0.221 ± 0.020

Validation Linear 0.818 ± 0.039 0.931 ± 0.00 0.113 ± 0.039
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