Marine Pollution Bulletin

Impacts of organic enrichment on macrobenthic production, productivity, and transfer efficiency: What can we learn from a gradient of sewage effluents?

			- C.
N/	lanuer	rint I)ratt_
1.0	lanusu	прсс	nan

Manuscript Number:	MPB-D-22-00558R1
Article Type:	Research Paper
Keywords:	Benthic ecology; Sewage discharge; Production; Productivity; Transfer efficiency; Marine coastal areas
Corresponding Author:	Seyed Ehsan Vesal OGS: Istituto Nazionale di Oceanografia e Geofisica Sperimentale ITALY
First Author:	Seyed Ehsan Vesal
Order of Authors:	Seyed Ehsan Vesal
	Rocco Auriemma
	Simone Libralato
	Federica Nasi
	Paola Del Negro
Abstract:	We studied the macrobenthic invertebrate biomass (B), production (P), productivity (P/B-ratio), and transfer efficiency (TE) influenced by sewage effluents discharge in a diffusion zone. Our results indicated a clear distribution pattern of macrofauna communities along the sewage discharge gradient where biological factors (B, P, P/B, and TE) were driven by changes observed in community structure, composition, and the influence of environmental variables. The lowest B, P, and P/B were observed at the stations sampled close to the pipelines. Abundance, biomass, production, and productivity increased with increasing distance from the pipelines toward stations placed at 100 m distance and then decreased toward the stations placed at 200 m, where there was a negative relationship between TE and B of benthic macrofauna at sampling stations. Overall, there was a clear influence of the sewage discharge on macrofauna communities, but not overly negative, and indicates surrounding environments are influenced by moderate organic impact.

March 15th, 2022

To Francois Galgani, Gui-Peng Yang, Michel Boufadel Editor-in-Chief of Marine Pollution Bulletin

Dear Editors,

We would like to submit our manuscript for consideration of publication in the journal of Marine Pollution Bulletin. The manuscript is entitled "Impacts of organic enrichment on macrobenthic production, productivity, and transfer efficiency: What can we learn from a gradient of sewage effluents?". It answers to scopes and aims of the journal. The manuscript has not been published elsewhere and it has not been submitted simultaneously for publication elsewhere. We think that our study deserves to be published, because it is the first attempt to investigate the variations in the production (P), productivity (P/\overline{B} yr⁻¹), and transfer efficiency (TE) of coastal macrobenthic communities subjected to a sewage discharge. In this study, our results showed a clear pattern of macrofaunal community distributions along the sewage gradient and among station positions. Our results showed minimum biomass (B), P, and P/ \overline{B} nearby the pipelines (stations located at <5 m from the pipelines) and maximum ones for intermediate distance (stations located at 100 m from the pipelines). Besides, this study displayed a negative relationship between TE and B of benthic macrofaunal at the sampling stations. Therefore, this suggests that the stations placed at 100 m distance from the source of organic matter most probably could be considered as the middle of the transition zone, where species numbers and biomass are usually higher, while close to the pipelines, there is an ecotonal zone where the exclusion of sensitive species is no already occurred but the presence of some opportunistic species start to attest. However, the effects of the sewage pipeline were not so dramatic and in fact, compared to other sites indicates an average of contribution to productivity, and local (proximity) effects were never too negative. However, due to the lack of information on TE of macrobenthic communities, not only in stressed conditions, we strongly recommend applying this approach in further studies to better understand the behaviour of TE and the related role of the energy fluxes among the macrobenthic trophic webs concerning to different environmental conditions and macrofaunal compositions.

All authors have approved the final article. As requested, we include a list of potential reviewers:

1) Marianne Nilsen

Norwegian College of Fishery Science, University of Tromsø, Breivika, 9037 Tromsø, Norway. Tel.: +47 57 67 63 68 marianne.nilsen@nfh.uit.no

2) Tyler Eddy

1. Nippon Foundation Nereus Program, Baruch Institute for Marine and Coastal Sciences, University of South Carolina, Columbia, SC, USA.

2. Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL, Canada. Tel.: +1 709 778 0400 tyler.eddy@mi.mun.ca

We are looking forward to receiving the reviewers' comments.

Yours sincerely,

Dr. Seyed Ehsan Vesal (On behalf of the other authors), ehsan.vesal@ias.cnr.it

Consiglio Nazionale delle Ricerche, Istituto per lo studio degli impatti Antropici e Sostenibilit`a in ambiente marino (CNR-IAS).

Dear MPB editorial manager,

there is no response to reviewers since there are no previous reviewers comments, only for

Language Editing Changes, that we addressed.

Best regards,

Seyed Ehsan Vesal

Highlights:

- Community features were affected by moderate organic impact;
- Production and productivity displayed higher values in the intermediate distance;
- Analyses distinguished a negative relationship between transfer efficiency and biomass;
- Biomass shows the lowest values at the high impacted stations;
- The highest values of transfer efficiency were observed at the high impacted stations.

Impacts of organic enrichment on macrobenthic production, productivity, and transfer efficiency: 1 What can we learn from a gradient of sewage effluents? 2

- Seyed Ehsan Vesal^{a,b*,1}, Rocco Auriemma^a, Simone Libralato^a, Federica Nasi^a, Paola Del Negro^a 3
- 5 ^a National Institute of Oceanography and Applied Geophysics - OGS, via A. Piccard 54, I-34151 Trieste, 4 6 5 Italy 7

8 ^b Department of Life Sciences, University of Trieste, 34127 Trieste, Italy 6

7¹⁰ 711 *Corresponding author: ehsan.vesal@ias.cnr.it

12 8₁₃ ¹Current address: Consiglio Nazionale delle Ricerche, Istituto per lo studio degli impatti Antropici e 914 Sostenibilit`a in ambiente marino (CNR-IAS), Loc. Sa Mardini, Torregrande, 09170, Oristano, Italy.

1118 Abstract

4

15 1016 17

19 We studied the macrobenthic invertebrate biomass (B), production (P), productivity (P/\overline{B} -ratio), and transfer **12**₂₀ 13_{22}^{21} efficiency (TE) influenced by sewage effluents discharge in a diffusion zone. Our results indicated a clear 14_{24}^{23} distribution pattern of macrofauna communities along the sewage discharge gradient where biological factors 15²⁵ (B, P, P/\overline{B} , and TE) were driven by changes observed in community structure, composition, and the influence 26 of environmental variables. The lowest B, P, and P/ \overline{B} were observed at the stations sampled close to the 1627 1729 pipelines. Abundance, biomass, production, and productivity increased with increasing distance from the 18₃₁ pipelines toward stations placed at 100 m distance and then decreased toward the stations placed at 200 m, where there was a negative relationship between TE and B of benthic macrofauna at sampling stations. Overall, there was a clear influence of the sewage discharge on macrofauna communities, but not overly negative, and indicates surrounding environments are influenced by moderate organic impact.

Keywords: Benthic ecology; Sewage discharge; Production; Productivity; Transfer efficiency; Marine

coastal areas.

1. Introduction

37

Coastal environments host a wide diversity of benthic macrofauna species that represent a fundamental food source for higher trophic levels (Kabat et al., 2012). Benthic macrofauna invertebrates hold key ecological functions (Reiss and Kröncke, 2005; Bolam and Eggleton, 2014) and macrozoobenthos communities are often used for monitoring marine systems (Nasi et al., 2018; El Asri et al., 2021; Oselladore et al., 2022). Changes in the composition of macrozoobenthic communities can also affect the food webs, with potential repercussions on the entire ecosystem functioning (Gray et al., 2006; Tillin et al., 2006; Schratzberger et al., 2007). Consequently, defining the potential role and estimating the benthic invertebrates interactions on food webs can contribute to the assessment of marine ecosystems and evaluating possible anthropic impacts. Benthic secondary production, which indicates the assimilation of organic matter's energy per unit of time and area (Cusson and Bourget, 2005), is an important ecological parameter, considered as an overall indicator of ecosystem functioning summarizing in traits of populations (biomass, life span, and body size) (Dolbeth et al., 2012), effects of biotic interactions (Hall et al., 2006; Kimmerer, 2006), as well as other environmental course of the source of the states and Crawford, 1973; Dolbeth et al., 2012).

The information on benthic biomass and production helps understand ecosystems dynamics (Nilsen et al., 52_{27}^{26} 2006; Libralato and Solidoro, 2010) and knowing how benthic production and biomass are distributed through trophic levels (TLs; Odum and Heald, 1975; Pauly and Watson, 2005) is important for understanding energy pathways, transfer efficiency as well as potential availability to upper TLs (Eddy et al., 2020).

⁵⁵³²₃₃ Furthermore, the pyramid of biomass and production over TLs has long been used to represent the structure ⁵⁶³⁴ of the ecosystem (Lindeman, 1942; Baumann, 1995), since it provides an understanding of energy flows ⁵⁷₃₆ (Stergiou and Karpouzi, 2002) and can be applied as an empirically based synthetic index to compare species ⁸⁸₃₈ feeding habits (Badalamenti et al., 2000). The continuous description of biomass and production pyramids ⁹⁴₄₀ (Gascuel et al., 2005; Libralato and Solidoro, 2010) also favored the development of novel analyses and ⁶¹⁴¹ definitions of ecosystem perturbation indicators (Link et al., 2015). Another important concept related to the ⁶¹⁴³ TLs is the transfer efficiency of energy (TE), which is calculated as the ratio between production at two ⁶²⁴⁵ successive trophic levels (Libralato et al., 2008). In an ecosystem, the TE between trophic levels is a central ⁶³⁴⁷ concept related to the mean individual growth efficiency and standard metabolism (Kerr, 1974; Andersen et ⁶⁴⁴₄₉ al., 2008); even intangible changes in TE can pool across trophic levels, and cause intense differences moving ⁶⁵⁵⁰ in the upper TLs until it affects the top predator abundances (Ryther, 1969; Stock et al., 2017; Moore et al., ⁶⁶⁵² 2018; Link and Watson, 2019).

Stress effects on benthic assemblages have already been evaluated, especially in the last 40 years (e.g. Pearson and Rosenberg 1978; Souza et al., 2013; Nebra et al., 2016; Gomes and Bernardino, 2020). Many authors for found that changes in abundance of small-sized species and dominance of opportunists were caused by r0⁵⁹₆₀ stressors, and have led to a reduction in macrofauna species richness and diversity (Gray et al., 1990; Hyland r1⁶¹₆₂ et al., 2005; Magni et al., 2022). To date, the focus has mostly been on changing in terms of structural features

of benthic communities (e.g., abundance, biomass, and species composition) but little is known about the 72 production (P), productivity (P/\overline{B}) , and transfer efficiency (TE) of macrofauna communities. 73 1 Studies on benthic macrofauna communities have traditionally focused on species diversity and composition 74 3 75 (e.g., Washington, 1984; Mouillot et al., 2006; Ieromina et al., 2016), and little attempts have been made to assess the ecological importance of benthic invertebrate productivity and TE (e.g., Pranovi et al., 2005) also 76 because of inherent difficulties in their quantification. In brief, while biomass is classically sampled directly 77 (e.g., Llopis-Belenguer et al., 2018), the macrobenthic production (P) can be measured using empirical models 7810 11 79_{12}^{-7} for the production-to-biomass (P/B-ratio) (yr⁻¹), namely also productivity (Dolbeth et al., 2005). The benthic

80₁₄¹³ P/B-ratio patterns are universally recognized as being mostly influenced by life-history characteristics such as 81¹⁵ 16 population density, body mass, recruitment, age, and trophic conditions (Waters, 1977, Rigler and Downing, 82^{17}_{18} 1984). The P/ \overline{B} -ratio for a given species was proposed by Sanders, (1956) as a proxy of the population turnover time of an organism and lifespan has been recognized as its main predictor (Robertson, 1979). Recent studies 8319 20 8421 have successfully predicted P/ \overline{B} values using empirical models (Cusson and Bourget, 2005; Zhang et al., 2011; 22 85_{23}^{--} Bolam and Eggleton, 2014). Brey's (2012) model is an assumption to better estimate than any other empirical 24 86₂₅ one the prediction of P/\overline{B} or P values and also takes into consideration further requirement inputs such as 87_{27}^{26} feeding mode and motility (Fuhrmann et al., 2015).

88²⁸ Some studies evidenced the variation of P/\overline{B} for benthic communities due to temperature and depth (e.g., 29 89³⁰ Degen et al., 2015), while others are linked to areas at higher latitudes (e.g., Nilsen et al., 2006) and also 9032 estuary influences (e.g., Bissoli et al., 2018). However, less attention was paid to P/ \overline{B} and TE estimations in 91₃₄ coastal areas due to anthropogenic impacts. In this regard, several studies have noted that coastal 92₃₆³⁵ eutrophication, in particular sewage discharges (Nixon, 1995; Dell'Anno et al., 2002; Yeleliere et al., 2018), **93**³⁷₃₈ significantly impacts the structural features of the macrozoobenthos community, causing notable variations in **94**³⁹ species composition and a biodiversity decrease (Short and Wyllie-Echeverria, 1996; Patrício et al., 2009; 40 95⁴¹ Tadir et al., 2017). 42

9643 In this study, we investigate the local variations in the production (P), productivity (P/\overline{B} yr⁻¹), and transfer **97**₄₅ efficiency (TE) of coastal macrobenthic communities subjected to a sewage discharge. We hypothesized that 98_{47}^{46} the macrobenthic communities respond to the sewage discharge with spatial variations, not only in terms of 99⁴⁸ 49 species composition and numbers but also in terms of biomass, production, P/\overline{B} , and TE. More specifically, 100⁵⁰ we answered the following questions: 1) What are the spatial differences in the biological factors of 51 101⁵² macrobenthos (biomass, production, P/\overline{B} , and TE) along a gradient of sewage effluents discharge? 2) Is there 53 10254 any relationship between the spatial variability of biological factors with the environmental variables (grain-10356 size, TN, Corg, C/N, and Eh)? 3) Does TE reflect the variations in benthic community compositions and 104⁵⁷₅₈ structure along the gradient of sewage discharges?

105⁵⁹ Overall, the results can shed light on the impacts of the organic and nutrient loads on the ecosystem, as well 106⁶¹ as the contribution of the benthic community to the reduction of their effects.

62 10763 64

2. Material and methods

2.1. Study area

108

109 1

The Gulf of Trieste is a shallow basin (average depth 17 m, maximum depth 25 m) along the northeastern in $\frac{4}{5}$ side of the Adriatic Sea, Italy (Fig.1), covering a total area of 750 km² from the Tagliamento River mouth in the north-west to Savudrija/Punta Salvore (Croatia) in the south east and has a coastline of approximately 100 km (Celio et al., 2002; Fonda Umani et al., 2012; Barago et al., 2020). Bottom temperatures vary from 6°C to >20°C, whereas the temperatures range from 5°C to >27°C at the surface.

115₁₂ Sedimentation within the Gulf is mainly controlled by river inputs rather than marine currents; in particular, 116₁₄¹³ Isonzo River, the main contribution of freshwater and sediments, leads to a pycnocline which increases during 117₁₆¹⁵ summer due to mixing with the high temperature of the surface layer, whereas the sedimentation rate reaches 118₁₈¹⁷ about 2.5 mm y⁻¹ in front of Isonzo stream and a rate up to 1 mm y⁻¹ in the central part of the Gulf (Malačič, 119₁₉¹⁹ 1991; Covelli et al., 1999).

12021 The Servola disposal plant is the main urban sewage discharge plant of Trieste city. It is a mixed type plant, 22 121_{23}^{-2} collecting and treating both meteoric and wastewaters, serves up to 200,000 inhabitants and has a maximum 122_{25}^{24} flow of 6000 L sec⁻¹ (Solis-Weiss et al., 2007). Since 1992, the Servola pipelines dispose of sewage after 123_{27}^{26} mechanical and chemical treatments. The sewage discharge flow is released through two submarine pipelines 124²⁸ 29 of 6.5 and 7.5 km in length, which includes several sewage diffusion towers at the end of both pipes, leading to the sea to a depth of 22 m. These diffusion towers are located in the last 500 m of the shortest pipe and the **125**³⁰ 31 12632 last 1000 m in the longest one, for a total of 1.5 km diffusion zone. Moreover, the pipelines have a capacity varying from 206 L/s during the dry to 618 L/s during the rainy season, respectively (Novelli, 1996). **127**34 128³⁵ 36

2.2. Sampling design and processes

130³⁹ The sediment and macrobenthic monitoring were carried out in April 2018 through 18 sampling stations 40 13141 placed in such a way as to take into account the distance from the diffusion zone, the distance from the ending 42 part of the pipelines, and the direction to the average annual bottom current in the area (SSE 170°). Thus 15 **132**43 44 13345 sampling stations were distributed along 3 transects: Proximal-P (at the end of the shortest pipeline); Medial- 134_{47}^{46} M (in the middle part of the 1km sewage diffusion area); Distal-D (at the end of the longest and main pipeline). 135⁴⁸ 49 For each transect, one station (0P, 0M, 0D) was placed nearby the diffusion area at <5 meters, other stations **136**⁵⁰ were located over current and undercurrent (indicated with "-") at 100 (1P, 1M and 1D; -1P, -1M and -1D) 51 13752 and 200 meters from the pipelines (2P, 2M and 2D; -2P, -2M and -2D). Two additional stations were placed 13854 in front of the main outfall at 100 and 200 m (1FD, 2FD, respectively). Additionally, a reference station was 139₅₆ located at the same depth as the others, 2 km from the distal end of the pipeline in the opposite direction to 140_{58}^{57} the average annual bottom current (station RS) (Fig. 1 and Table 1). In this study, we considered groups 0, 1 141⁵⁹ 60 and 2 of stations for those stations placed at <5, 100, and >200 meters away from the pipes, respectively.

142⁶¹ In each sampling station, we estimated the water column temperature at the bottom using CTD Probe (SBE
 143⁶³ 16plus V2 SeaCAT). Sediments for physical and chemical analyses (grain-size, Total Organic Carbon-Corg, 64

65

129³⁷

Total Nitrogen-TN contents, and redox potential-Eh) and macrofauna communities were collected by a Van Veen grab (0.1 m^2) . The macrofauna communities were sampled in three replicates for each station and sieved through a 1 mm mesh. The retained sediment and organisms were immediately fixed in ethanol 70°. In the laboratory, taxonomic identification of benthic macrofauna was carried out to the lowest possible taxonomic level and species abundance was counted. Species names were cross-checked against the World Register of Marine Species (https://marinespecies.org/).

2.3. Environmental variables

The grain-size analysis, including sand, silt, and clay fractions (%), was determined by sieving sediments at 2 mm; it was then first pre-treated with 10% hydrogen peroxide ($60^{\circ C}$ for 24 hours) and afterward analyzed with a Malvern Mastersizer 2000 equipped with Hydro 2000s. Total organic carbon (Corg) and nitrogen (TN) were also measured on freeze-dried sediment samples which were milled using a pestle and mortar and a fraction > 250 µm was isolated from the rest of the specimen.

Subsample triplicates (~8–12 mg) were straightforwardly weighed in capsules (5×9 mm) on a micro-ultra balance Mettler Toledo model XP6 (precision of 0.1 μ g). Tin and silver capsules were utilized for TN and Corg measurement, sequentially. The values of Corg and TN (represented as mg g⁻¹) were estimated utilizing an elementary analyzer CHNO-S Costech model ECS 4010. Before Corg quantification, based on Sharp methods (1974), subsamples were treated with expanding HCl concentrations (0.1 and 1 N) to eliminate the carbonate (Nieuwenhuize et al., 1994).

The redox potential (Eh) allows inferring the depth of oxygen permeation from surface sediments (Hargrave et al., 2008), determines the physico-chemical state of marine sediments, and indicates the amount of organic matter. Eh measurements were estimated on the cores on board. Estimations were made utilizing electrodes from the undisturbed superficial layer (0-1 cm) (Pearson and Stanley, 1979). The platinum electrode was standardized (CRISON 5265) in a light solution and then the analysis was carried out with Metrohm 704 voltimet (Clesceri et al., 1996).

2.4. Estimation of community biomass, production, and P/\overline{B} ratio

For biomass measurements, individuals were blotted dry for about 30 seconds (Nilsen et al., 2006) and then wet weight (WW) was measured using a digital laboratory scale with high precision and accuracy. In case of the presence of tubicolous polychaetes, the tubes were removed before weighing. Subsequently, to obtain the Dry Weight (DW), samples were placed in an oven at 100°C for 24 hours, cooled in a lab desiccator to normal room temperature, and then weighed. To obtain the ash quantity of the organisms, they were placed in an oven at 500°C for 24 hours, cooled to room temperature in a lab desiccator, and then weighed. To obtain Ash Free Dry Weight (AFDW), ash-weight was subtracted from DW (Wetzel et al., 2005).

A modified multi-parameter model based on Artificial Neural Network (ANN) and developed by Brey, (2012; 179 1 Version 01-2012 at http://www.thomas-brey.de/science/virtualhandbook), was used to estimate the 180 $\frac{2}{3}$ Production-to-Biomass ratio (P/B) of sampled invertebrates.

To implement the model and as one of the required input data, the biomass of each species (AFDW) for each 181 station was converted to energy Joule values using energy densities (kJ g⁻¹) referring to a global "Conversion 182 factors" data published by Brey et al., (1988, 2010). If no conversion factors were available at the species 183 level, a factor was used from the next highest taxonomic rank. The model allows determining estimates of 18410 11 18512 annual P/ \overline{B} ratios for each taxon at each station with a 95% confidence interval based on three main input 13 parameters: individual body mass (Joules), the average temperature (°C), and the depth of the sampling station 18614 (meters). We added the average depth and temperature of the sampling area in April (21 m and 9.5°C, respectively) and considered this month as the right sampling period for obtaining annual estimates of P/\overline{B} . Furthermore, the ANN uses functional traits which consisted in motility classes (infauna, sessile, crawler, and 20 19021 facultative swimmer), taxon (Mollusca, Annelida, Crustacea, Echinodermata, and Insecta), feeding type 22 (herbivore, omnivore, and carnivore), habitat (lake, river, marine, subtidal, and exploited). Since the species were collected in a marine coastal environment with no commercial exploitation in our study area, the other indices were always zero. The functional traits are described by binary inputs (0 or 1) to indicate belonging to categories. Additionally, we measured the productivity for each station by summing the P/\overline{B} values of the species found in each station.

19632 We obtained the information on data inputs and biological traits from literature (i.e. Giangrande, 1997; Rouse, 197_{34}^{33} 2000; Jumars et al., 2015), databases (https://www.itis.gov/; http://www.polytraits.lifewatchgreece.eu; 198_{36}^{35} https://www.marinespecies.org) and expert knowledge. We also calculated the average production for each 199_{38}^{37} station by multiplying P/B and biomass of all taxon found at each station.

2.5. Trophic spectra and transfer efficiency (TE) calculation

⁴³ Data on AFDW biomass, P/\overline{B} -ratio, trophic levels (TL_{*i*}; species *i*), and dispersion of the TL_{*i*} (OI_{*i*}; quantified ⁴⁴ as the variance) for each species at sampling stations, were used for obtaining trophic spectra of production ⁴⁶ based on the dispersion-based method proposed by Libralato and Solidoro (2010). We collected the data on ⁴⁸ TL_{*i*} and OI_{*i*} for each species from the database (https://www.sealifebase.ca/search.php). When no information ⁵⁰ was available, we used the data for the family level.

20752 The trophic spectra of production determined based on macrobenthic community data allowed calculating the 20854 transfer efficiency (TE; see Libralato and Solidoro, 2010) as a measure between productions at two adjacent 209₅₆ integer trophic levels and varies between 0 to 1 (Lindeman, 1942). We used the trophic spectra in the range 210₅₈⁵⁷ between 2<TL<4 to estimate TE values.

2.6. Data analysis

214

216

217

218

The dissimilarity matrixes from square root transformed abundance and productivity data were calculated using the Bray–Curtis coefficient. This transformation aimed to accentuate the effect of species with low values in the sampling stations. Then a non-metric multidimensional scaling analysis (nMDS) plot was performed on abundance data to visualize the ordering of the samples in reduced (2D) space.

219 $\frac{8}{9}$ To test for macrobenthic community differences along the gradient of sewage discharge, an ordered one-way 22010 ANOSIM test was performed on both matrices using the 'distance from the diffusion zone' as factor. Stations 22112 placed at <5, 100, and 200 meters were gathered in group 0, group 1 and group 2, respectively. The reference 222 $\frac{13}{14}$ station was included in group 2.

223¹⁵₁₆ Furthermore, RELATE analysis was used to test matched resemblance matrices to determine whether results 224¹⁷₁₈ from the combination of abundance and P/\overline{B} values of macrofauna were significantly correlated. These 225¹⁹₂₀ analyses were performed using PRIMER 7 (PRIMER-E Ltd. Plymouth, UK) (Clarke et al., 2014).

22621 Multivariate analysis (Principal Component Analysis, PCA) on log-transformed and normalized data was used 22 227_{23}^{227} to investigate the spatial variations in biological factors (biomass, production, P/B, and TE) and abundance of 228₂₅²⁴ macrofauna community among sampling stations. Additionally, redundancy analysis (RDA) was performed 229_{27}^{26} to determine the relationships between biological and environmental data. Both the PCA and RDA analyses **230**²⁸ were conducted using R version 3.6.0 (R Development Core Team, 2018). Statistical tests in SPSS v. 20 were 29 231³⁰ also carried out to indicate the significant levels of observed environmental variables and biological factors. 23232 A Spearman-rank correlation test was performed to investigate relationships between the biological factors 233₃₄ and environmental variables, and Jonckheere-Terpstra test was used to detect significant differences in **234**₃₆³⁵ biological factors and environmental variables among the stations along the sewage effluents discharge 235_{38}^{37} gradient.

3. Results

39 236⁴⁰ 41

43

23742

3.1. Spatial variation in environmental variables

23844 The variation of environmental variables measured at each station e.g. sediment grain size, TN (Total **239**⁴⁵₄₆ Nitrogen); Corg (organic carbon); C/N (carbon and nitrogen ratio); Eh (redox potential), are shown in Table **240**⁴⁷₄₈ 1. The sediments of the whole study area were mainly characterized by the high percentage of fine particles. **241**⁴⁹ A higher value of silt was observed at stations 2M, whereas a higher percentage of clay was noticed at stations 50 **242**51 RS. The mean value of sand fraction (%) was 15.7±11.6 and the highest percentages were detected at the 52 24353 stations 0D and 0M. As corroborated by the Jonckheere-Terpstra test, significantly higher sand fractions were 244 $\overline{55}$ detected at stations nearby the ducts (z=-3.60, p<0.01). On the contrary, silt (z=1.90, p<0.05) and clay (z=3.60, 245₅₇56 p<0.01) values significantly increased toward the farther stations.

Furthermore, Corg significantly increased nearby the pipelines (Jonckheere-Terpstra test, z = -2.23; p<0.05). For both Corg and TN, the highest contents were observed at 0D (60.5 and 3.8 mg g⁻¹ respectively), whereas the lowest ones were measured at RS (10.7 and 1.2 mg g⁻¹ respectively). Also for C/N ratio, the highest values

were observed in the sewage diffusion zone compared to RS. Notably, higher ratio values were estimated at
1 stations close to the two outfalls (18.6 and 13.0 at 0D and 0P, respectively).

² Lower Eh values were observed in the whole sewage diffusion area (average: -105.0 ± 97.1 mV) compared to ⁴ RS (54 mV). In particular, the lowest values of Eh were observed in the D and P transects, both influenced by ⁶ the two sewage pipeline outfalls with an average of -177.0 ± 63.8 mV and -101.6 ± 71.4 mV, respectively.

3.2. Macrobenthic community distributions along the gradient of sewage effluents discharge

The total abundance ranged between 343 ind. m^{-2} to 3436 ind. m^{-2} at sampling stations 0P and -1D, respectively. Species composition varied following the gradient of distance from the main pipeline (Fig. 2). The nMDS plot divided the station close to the pipes (group 0) at the left side of the plot, to those farthest away at the right side (group 1 and group 2). The global ordered one-way ANOSIM test confirmed what was highlighted by nMDS analysis. The species composition significantly differed among groups of stations (R=0.52; P<0.01). In addition, the pairwise tests evidenced the similarly higher-range values of R (0.49 and 262²³₂₄ 0.84) for the group 0 vs group 1 and group 0 vs group 2 comparisons respectively, while with a lower value (of 0.18) for group 1 vs group 2. These results implied that the explanation for the global test results in group 264²⁷₂₈ 0 differed from group 1 and group 2, but the latter ones were less distinguishable. Therefore, the pairwise test mirrored a clear pattern of decreasing differences in the macrofauna community composition with the 263²¹₂₆ increasing distance from the pipelines.

3.3. Biomass, production, and productivity (P/\overline{B} -ratio)

The biomass (B) of the macrofauna communities in the whole sampling area was rather variable among the sampling stations, measured in 344.2±14.4 g m⁻² based on wet weight. The average biomass, expressed in energy content, was 14.2 ± 7.9 kJ m⁻², while production (P) and productivity (P/B) were 21.7 ± 17.3 kJ m⁻² yr⁻¹ and 1.3 ± 0.4 yr⁻¹, respectively (Table 2). The highest biomass occurred at the station -1P, with a value of 28.1 and 1.3 ± 0.4 yr⁻¹, respectively (Table 2). The highest biomass occurred at the station -1P, with a value of 28.1 anged from a minimum of 3.9 kJ m⁻² yr⁻¹ (0D) to a maximum of 61.7 kJ m⁻² yr⁻¹ (1M), whereas the P/B varied from a minimum of 0.6 yr⁻¹ (0D and 0P) to a maximum of 2.2 yr⁻¹ (1M) (Table 2). Additionally, B, P, and P/B values followed the same pattern. The highest values were observed at the stations placed 100 m away from way from 277_{51}^{50} the pipelines (B, P, and P/B: 16.7 ± 10.5 kJ m⁻², 29.5 ± 22.9 kJ m⁻² yr⁻¹ and 1.5 ± 0.4 yr⁻¹, respectively) compared to farther ones (B: 13.4 ± 6.6 kJ m⁻²; P: 18.5 ± 11.8 kJ m⁻² yr⁻¹; P/B: 1.2 ± 0.3 yr⁻¹; P/B: 0.93 ± 0.5 yr⁻¹) (Fig. calculated at stations nearby the pipes (B: 10.3 ± 5.3 kJ m⁻²; P: 12.3 ± 13.0 kJ m⁻² yr⁻¹; P/B: 0.93 ± 0.5 yr⁻¹) (Fig. 28056 3).

The estimated average P/\overline{B} for the main taxonomical groups Polychaeta, Crustacean, Mollusca, Echinodermata were 0.72, 0.38, 0.20, 0.05 yr⁻¹, respectively. Polychaeta was the only group present in high number and high biomass, despite the low individual medium weights, at the majority of stations. A high

64 65

dominance of the polychaete *Capitella capitata* with low estimated P/ \overline{B} ratios and biomass resulted at the 284 285 stations located nearby the main underwater outfall (0D), indicating a lower contribution of this species to the 1 total production compared to biomass at these stations (Table 2). Polychaeta showed the highest value of P/\overline{B} 286 3 at stations 1FD (69.3%) and -1D (67.6%) (0.87 and 0.99 yr⁻¹, respectively), whereas Crustacea and Mollusca 287 were the major contributors to P/\overline{B} at 1M. Echinodermata generally had a small contribution to total productivity due to their low abundance and biomass. Moreover, comparing the macrofauna species abundance and P/\overline{B} matrices, they were very significantly related (RELATE test: rs=0.92; p<0.01). Spearman's 29112 rank correlation coefficient tests indicated that there was a positive significant correlation between B and P (rs=0.923, p<0.01), as well as a positive significant correlation between B and P/ \overline{B} (rs=0.617, p<0.01). Moreover, P/\overline{B} was positively correlated with production (r_s=0.923, p<0.01). The result showed that there was no significant correlation between TE and other biotic factors (i.e., biomass, production, and productivity) (Table 3).

3.4. Transfer efficiency (TE)

TE showed the lowest values at the stations located 100 meters away from the pipes (group 1), whereas the highest TE value was observed at stations placed <5 m away from the pipelines (group 0) (Fig. 4). Moving away from the group 0 to group 1, TE decreased (17.6 \pm 3.3% and 11.8 \pm 0.2%, respectively), whereas biomass increased (10.3 \pm 1.7 and 16.7 \pm 1.4 kJ m⁻², respectively) (Fig. 4). However, in group 0, 0M showed a high TE value compared to other stations in front of the two outfalls (i.e. 0P and 0D) (Table 2).

In the principal component analysis (PCA), all stations were distributed along the gradient of sewage effluents discharge. The cumulative variance was 78%, which showed stations plotted along the PCA1 (54.2%) were separated by distinctions in B, P, and P/ \overline{B} . The PCA2 (23.8%) separated stations correspond to differences in TE and abundance. Stations on the right side of the plot with higher values of B, P, and P/ \overline{B} were noted (i.e. the stations located at 100 m distance from the pipelines), whereas the stations draft on the left side of the plot showed lower ones. Further, stations plotted at the top side of the plot showed high values of TE and low values in B such as 0D and 0M. Lastly, stations located on the bottom side showed high B values and low TE values (Fig. 5).

3.5. Relationships between benthic macrofauna biological factors and environmental variables

The RDA, performed on biological factors and environmental variables of the sampling stations, showed 88.7% of the total variance, accounting for the 1st (64%) and 2nd (24.7%) axes (Fig. 6). TN, Corg, and C/N were correlated with the negative part of the first axes and plotted on the left side, nearby the station in front of the outfalls (0D and 0P). The sand was positively related with TE, where 0M, 0D, 2FD, and RS were plotted in the top part of the plot, while silt and clay had a negative correlation with TE, where 1M, 1P, and -1P were plotted on the bottom side of the plot. The Eh vector points in the opposite direction of TN, Corg, and C/N contents, showing that stations with higher Eh tend to have the higher B, P, and P/B with lower TN, Corg, and C/N values (i.e., -1D, -1M, 1M, -1P, 1P, 2P and 2M). Moreover, Corg, and C/N values were positively associated with TE. RDA analysis showed that the distribution of stations nearby the pipelines in the plot (i.e. 0D, and 0M) was mainly related to the high values of TE and sand fraction. According to Spearman's rank correlation coefficient, P, P/ \overline{B} and TE showed a positive correlation with Eh (r_s=0.593, 0.632 (p<0.01) and 0.582 (p<0.05), respectively). Furthermore, the results highlighted that B, P, and P/ \overline{B} were negatively correlated with C/N (rs=-0.565 (p<0.05), -0.656 and -0.630 (p<0.01), respectively) (Table 3).

4. Discussion

In this study, we evaluated the influence of underwater sewage discharges on P, P/\overline{B} , and TE and considered the variation of these biological factors related to physico-chemical (grain-size, TN, Corg, C/N, and Eh) variables. The sampling design based on stations placed at increasing distance from the main source of contamination allowed assessing the spatial extent of increased organic enrichment, and biological effects on structure, production and efficiency of macrobenthic communities along the enrichment gradient.

Our results showed that the sand fraction and organic carbon was higher at stations nearby the pipelines 333_{25}^{24} compared to farther ones and lower redox potential with negative Eh values were observed at the stations 34_{27}^{26} gathered in D and P transects close to pipeline end. On the contrary, we found increasing patterns for silt and 35_{29}^{28} clay percentages toward the station placed 200 meters away from the pipes. All the above, was to be expected. 36_{29}^{31} For instance, higher sand fraction and Corg are due to the high value of deposit discharge by sewage pipelines, 37_{32}^{31} which also includes meteoric water that leads sand size clasts to the sea coming from the washout of land and 383_{34}^{33} streets (Diaz et al., 1995, Melis et al., 2019), while the low redox potential results from the lack of oxygen and hypoxic conditions at sediments nearby the end of the two pipes. The high microbial activity in the sediments for decomposing organic matter severely deplete dissolved oxygen, thus explaining the negative Eh values which are a direct effect of wastewater discharge at the diffusion area (Matijević et al., 2007; Arend et al., 40^{27} 2011).

Considering the faunal composition, the nMDS results (Figure 2) clearly indicated changes in benthic communities among stations sampled along the gradient of impacts of the sewage effluents. The monotonic changes in community compositions with increasing distance from the sewage ducts were also corroborated by the ordered ANOSIM analysis carried out in previous work (Auriemma et al., 2016). In particular, the stations nearby the diffusion zone (<5 meters) were clearly affected by the sewage, and the remarkable variations in species composition were observed, especially close to the two outfalls (stations 0P and 0D). Thus following the initial 'disturbance effect', when organic enrichment proceeds then reduced oxygen concentrations can lead to clear changes in species composition and abundance of the benthic organisms (Gray et al., 2002; Hyland et al., 2005; Magni et al., 2022).

4.1. Macrofauna production, productivity, and transfer efficiency role along the gradient of sewage effluents

Benthic biomass was an important factor in determining benthic production and this is consistent with ٦ other studies (Tumbiolo and Downing, 1994, Cusson and Bourget, 2005; Fuhrmann et al., 2015). In our study, stations belonging to group 1 showed higher abundance and number of species than other stations that have 8 higher B and P: these findings confirm the classical Pearson and Rosenberg model, which is the prediction of responses of species richness, abundance, and biomass, for different levels of anthropogenic organic 11 36012 enrichment impacts on benthic communities (Pearson and Rosenberg, 1978; Rosenberg, 2001) (see Fig.3) In accordance with Burd et al., (2012), our results showed that production of macrofauna communities increased with distance from the pipelines and reached a maximum at stations located 100 m away from the source of organic matter (group 1), probably due to the reduced organic matter flow. Production is affected by several anthropogenic disturbances to the seabed, such as dredged material disposal (Rhoads et al., 1978; 20 **365**21 Wilber and Clarke, 1998), fish farming (Kutti et al., 2008), and bottom fishing and trawling (Jennings et al., 22 2001a, 2002; Hiddink et al., 2006). This study illustrated that both biomass and production have a peak at intermediate distance and they stabilized at the group 2 at 200 meters from the pipelines. This result suggests that at 100 m (group 1) from the source of organic matter there is a transition zone, where, as postulated by Pearson and Rosenberg (1978), species numbers and biomass are usually higher also in accordance with the 29 370³⁰ intermediate disturbance hypothesis (Connell and Slatyer, 1977). In this transition zone between the natural 37132 environmental condition, with reduced organic matter input and severe environmental conditions, with high 372₃₄ organic matter and a huge reduction in species numbers, there is an ecotonal zone where the exclusion of sensitive species has not already occurred but the presence of some opportunistic species begins to be seen. Accordingly, our results show that stations close to pipelines (group 0) can most likely be considered at the end of ecotonal zone, due to the proximity to the maximum value of organic enrichment, where the 376⁴¹ macrobenthic community can almost fully utilize it before starting to decrease in species numbers and 37743 diversity. The findings of this study were similar to other studies regarding infauna species dominance 37845 concerning a gradient of organic enrichment, albeit on a much larger spatial scale (e.g. Brown et al., 1987; Weston, 1990).

According to the ANN model prediction, P/\overline{B} increased along the gradient of sewage effluents discharge with **381**⁵⁰ increasing distance from the pipelines, where it was lower at group 0 than group 1 and group 2. Additionally, 51 382⁵² in the whole study area, polychaetes dominated the benthic macroinvertebrate communities in numbers, 38354 biomass, and P/ \overline{B} despite the low average individual weights, compared to the other macrofauna taxa. The **384**56 dominance of polychaetes is well documented in silty-clay sediments, also in our study area (Nasi et al., 2017; Vesal et al., 2021). Previous studies have also reported that polychaetes were the most productive group, **386**59 60 mainly due to their density combined with a high P/B ratio (e.g. Rhoads et al., 1978; Möller, 1985; Mistri and **387**⁶¹ Ceccherelli, 1994; Nilsen et al., 2006). In agreement with our results, Lin et al., (2016) estimated higher 62 38863 productivity in the stations with lower Corg that were linked to modifications in the benthic community. In

our study, the highest values of P/\overline{B} were observed at stations placed 100 meters away from the pipes due to 389 390 1 a higher proportion of polychaetes which are recognized as r-strategist species, i.e., with high P/ \overline{B} values (Möller, 1985). Therefore, our results support the pattern hypothesised by Pearson and Rosenberg (1978) in 391 3 the classic model for biomass and numbers of species. Surprisingly, we found the low values of P/\overline{B} ratios at the group 0 (close to the pipeline). We observed no peak of opportunistic species (e.g., Polychaeta C. capitata) at stations near the pipeline, but we did find other species with low P/\overline{B} ratio (i.e. K-strategist) (Mistri and Ceccherelli, 1994; Cusson and Bourget, 2005), thus resulting in lower total productivity than other stations 39612 along the organic enrichments sewage gradient. Moreover, the average P/ \overline{B} estimated (1.3 y⁻¹) in our study area was considerably higher than previous estimates for the South-western Barents Sea (0.25 y⁻¹, Denisenko, 2001) the Sørfjord, North Norway (0.29 y⁻¹, Nilsen et al., 2006), the Barents Sea (0.3 y⁻¹, Denisenko and Titov, 2003) and the Baltic Sea (0.32 y⁻¹, Harvey et al., 2003) (Table 4). Due to the relatively high P/\overline{B} ratios observed in our study area often being accompanied by low mean biomass, the macrofauna communities tended to show 40121 a high total production, indicating that the effects of organic enrichment derived from the sewage pipelines $^{22}_{402_{23}}$ were not so negative on the nearby impacted study area. This is possibly due to a combination of discharge levels with respect to the environment and capacity of the system to disperse the loads.

In this study, macrofauna invertebrates were sampled in April and the assessments of biotic variables did not reflect seasonal changes. Furthermore, the sampling period was before the settling of juveniles for most macrofauna organisms. However, P/ \overline{B} values may differ due to seasonal variations in environmental variables and the relative contribution of juveniles (with small body size and high P/ \overline{B} ratios) (Fuhrmann et al., 2015). Hence, estimates given in this study were likely not subject to large seasonal changes. We could therefore infer that P/ \overline{B} measured represents the average annual values fairly well and essentially mirrors the impact of the sewage discharge along the sampled gradient.

Regarding station 0M, we observed higher values of biomass, production, and P/\overline{B} than other stations placed nearby the pipes (i.e. 0D and 0P). This was probably due to the lower amount of organic enrichment received received to stations 0D and 0P located in front of the two outfalls. Indeed, these features indicate that probably the environmental context at 0M is fairly similar to that observed at stations located 100 m away to the pipes and it is reasonable to expect the similar environmental patterns in terms of sewage organic table and influence. This is also confirmed by the overall macrofauna composition and richness present at 0M station, which is much more similar to those observed at stations 100 m away rather than those placed in front table and the pipes and the pipes is clearly shown in the nMDS plot (Auriemma et al., 2016; Vesal et al., 2021). Our results support the hypothesis that increased organic enrichments due to the sewage discharges could table decrease biomass but increase transfer efficiency at the stations located <5 m away from the pipelines (group table decrease biomass but increase transfer efficiency at the stations located <5 m away from the pipelines (group table decrease biomass but increase transfer efficiency at the stations located <5 m away from the pipelines (group table decrease biomass but increase transfer efficiency is important to study macrofauna community changes. This approach now ensures that transfer efficiency is important to study macrofauna communities, at the pipeline by sewage discharge given in the present study outcomes. Transfer efficiency is shaped at the present study outcomes. Transfer efficiency is shaped

by the nature of species involved, the diversity of food web interconnections and energy fluxes of organic 425 material. However, fluctuations in species abundances can control energy pathways through food webs, and 426 1 systems dominated by a small number of species may have limited resilience (Steneck et al., 2011). In our 427 3 case, in front of the pipeline outfalls, the sewage discharge causes the occurrence of tolerant species with 428 smaller individual bodies, fast turnover and lowest values of biomass (i.e. the small-sized polychaeta, 429 8 Capitella capitata) that can suggest the locally high TE. Moving away from the outfalls (group 1), TE 430 decreased and biomass increased, with TE and B values shifting to normal at increasing distances (group 2). **431**10 11 Therefore, we hypothesized a priori that sewage discharges would lead to a decrease in production and **432**12 433_{14}^{13} productivity rates for macroinvertebrates near the pipelines but nonetheless resulting in a maximum of **434**¹⁵₁₆ biomass at an intermediate disturbance level.

A wide range of processes and scales affect transfer efficiency results and its estimation can be challenging (Eddy et al., 2020) since TE results from diverse metabolic aspects, such as life cycle, consumption, excretion, respiration and exploitation. Here, TE was roughly estimated for the benthic community on the basis of the trophic level of organisms within an ecosystem determined by their diets, and production at each trophic level (Ullah et al., 2018; Eddy et al., 2020) and our results indicate that the macrofauna species with low trophic levels, low biomass, at group 0, have higher overall TE compared to the farther stations from sewage discharge.

442³⁰ The estimated average TE equal to 13.9% for macrofauna communities in the whole sampling area (see Table 44332 2) is larger than the global average of 10% estimated for organisms from zooplankton and benthic organisms 444³⁴ to fish, but it is consistent with average estimates for trophic levels 1-2 in the temperate Northern hemisphere 445³⁵₃₆ marine ecosystems (13%) (Harrison et al., 2000).

4.2. Relationship between biological factors and environmental variables

Similarly, the macrofauna P, P/\overline{B} , and TE were influenced by the environmental variations due to the sewage effluents. In this study, we attempted to identify the relationships between environmental variables and biological factors of benthic macrofauna.

The RDA analysis showed that all stations grouped by distance (<5, 100, and 200 m) were distinctly different from each other according to their biological factors and environmental variables. The analysis indicated that the influence of Eh and the grain size characteristics were the most important for biological factors of macrofauna communities. However, environmental conditions, in particular the characteristics of sediments, typically structure soft-bottom benthic communities (see e.g., Nilsen et al., 2006; Gray and Elliott, 2009).

The Eh trend was the only environmental parameter that showed a positively significant correlation with 7_{58}^{57} richness, production, productivity, and TE estimates. Indeed, the values of biological factors and Eh ones, increased with the distance from the pipelines to stations less impacted by sewage discharge (e.g. stations 9⁶¹ located 100 meters' distance), suggesting that the amount of organic matter can directly influence the

460 environmental sedimentary conditions and, therefore, it can affect these biological factors with deeply461 1 changes, even on small spatial scales.

 $\frac{1}{3}$ However, it is possible that while certain environmental conditions enhance productivity for one species, $\frac{4}{5}$ others may show an increase in productivity under different values of environmental variables (Bolam et al., $\frac{6}{7}$ 2010); indeed, higher P/ \overline{B} ratios suggest higher population resilience to environmental perturbations $\frac{8}{9}$ (Tumbiolo and Downing, 1994). We observed that C/N contents along the gradient of sewage effluents 46610 discharge showed no correlation with TE, but there was a notable negative correlation with B, P, and P/ \overline{B} .

467₁₂ In this study, the proportion of TE made up of the macrofauna, increased at stations located near the pipelines 468¹³₁₄ with increasing sand fraction and low Eh, similarly to how Kutti et al. (2008) reported that the station close to 469¹⁵₁₆ high loading of organic matter was characterized by low Eh values. In other words, the impact of sediment 470¹⁷₁₈ deposition tends to be more taxon-selective; ultimately it favors the taxa that have an inherent ability to 471¹⁹₂₀ vertically migrate through the disposal of sediments (e.g. Hinchey et al., 2006; Bolam et al., 2011; Last et al., 47221 2011; Burd et al., 2012).

473²²₂₃ However, the direct correlations between the macrobenthos and sediment characteristics clearly showed that 474²⁴₂₅ variation in the measured environmental variables was linked with the observed decreases in biomass, 475²⁶₂₇ production, and P/ \overline{B} of the macrofauna. Environmental variables influence community compositions and P/ \overline{B} 476²⁸₂₉ that are largely a function of the intrinsic characteristics of species (Cusson and Bourget, 2005; Bolam et al., 477³⁰₃₁ 2010). In general, sediment composition and the available organic matter, are known to structure benthic 47832 communities and determine the distribution of benthic infauna (e.g. Pearson & Rosenberg 1978, Wieking and 479³⁴ Kröncke, 2003; Kröncke et al., 2004; van Hoey et al., 2004).

 480_{36}^{35} B, P/ \overline{B} , and TE, as well as all other parameters investigated here, are known to vary over time, to be influenced 481_{38}^{37} by external environmental factors, and also might be deeply affected by unquantified spatial exchanges and 482_{40}^{39} flows (because of transport and active movement of species). Therefore, since estimates are based on 483_{41}^{41} assumption that sampled areas are closed systems, a limitation of the above might result from the influences 484_{43}^{44} of possible lateral energy flows. 485_{45}^{44}

5. Conclusion

487⁴⁸ This study quantifies the potential impacts of the organic matter loading from sewage discharge to the 49 488⁵⁰ coastal marine environment and its influence on structure, biomass, production, productivity, and transfer 51 48952 efficiency of macrofauna communities. On a local scale, we observed a clear change in the macrofauna 53 49054 community in the stations studied along the sewage gradient. Distance from the source, grain size **491**⁵⁵ 56 characteristics and Eh were the most important drivers for the variations of the functional processes of **492**⁵⁷ macrofauna. Our results showed minimum B, P, and P/ \overline{B} nearby the pipelines and maximum ones for 58 **493**59 intermediate distance (stations located at 100 m from the pipelines). This study showed a negative relationship 60 between TE and B of benthic macrofauna at sampling stations. TE displayed the highest value at stations close **494**61 49563 to the pipeline outfalls (group 0), where benthic communities are also characterized by opportunistic smaller 64

65

486⁴⁶47

500 8 501 **502**10 11 **503**12 13 504₁₄ 505¹⁵ 16 506¹⁷₁₈ 507¹⁹ 20 22 **509**23 510²⁴ 25 511²⁶ 27 51228 29 31 **514**32 515³³ 34 **516**³⁵ 36 51737 References 38 51839 51940 520⁴¹ 521⁴² 521₄₃ 522₄₄ **523**45 **524**46 525⁴⁷ 525₄₈ 526₄₉ **527**₅₀ 52851 529⁵² 530⁵³ 54 531₅₅ **533**57 534⁵⁸ 535⁵⁹ 535₆₀ **538**63 64 65

496

498

499

species with low biomass values and fast turnover (i.e. Polychaeta, Capitella capitata). Therefore, this 1 suggests that stations placed 100 m away (group 1) from the source of organic matter could be considered as 497 an intermediate/transition zone, where species numbers and biomass are usually higher. Close to the pipelines, 3 there is no exclusion of sensitive species but only the presence of some opportunistic species. Overall, our results indicate a direct influence of the sewage discharge on the biological features of macrofauna communities and show surrounding bottoms influenced by moderate organic impact. However, the effects of the sewage loads were not so dramatic. Indeed, compared to other sites, it indicates an average increasing productivity contribution, where the local (proximity) effects were never too negative.

Additionally, to reduce the effects of sewage discharge on macrofauna communities, we suggest planning the sewage discharge pipelines by placing the maximum possible number of diffusion towers to minimize the impact at the end of the pipeline main outfall. Furthermore, due to the lack of information on TE of macrobenthic communities, not only in stressed conditions, we strongly recommend applying this approach 50821 in further studies to better understand the behaviour of TE and the related role of the energy fluxes among macrobenthic trophic webs concerning different environmental conditions and macrofauna compositions.

6. Acknowledgments

The study was funded by AcegasApsAmga Hera. Seyed Ehsan Vesal acknowledges the receipt of a 51330 fellowship from the ICTP Programme for Training and Research in Italian Laboratories, Trieste, Italy. The authors wish to thank Marco Segarich and Carlo Franzosini for logistical support during sampling activities.

Aller, J. Y., Aller, R. C., Green, M. A., 2002. Benthic faunal assemblages and carbon supply along the continental shelf/shelf break-slope off Cape Hatteras, North Carolina. Deep-Sea Res II 49:4599-4625. https://doi.org/10.1016/S0967-0645(02)00131-5.

Andersen, K. H., Beyer, J. E., Lundberg, P., 2008. Trophic and individual efficiencies of size-structured communities. Proceedings of the Royal Society B 276:109–114. https://doi.org/10.1098/rspb.2008.0951.

Arend, K. K., Beletsky, D., Depinto, J. V., Ludsin, S. A., Roberts, J. J., Rucinski, D. K., Scavia, D., Schwab, D. J., Hook, T. O., 2011. Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie. Freshwater Biology, 56, 366-383. https://doi.org/10.1111/j.1365-2427.2010.02504.x

Auriemma, R., Nasi, F., Del Negro, P., 2016. The macrozoobenthic fauna of the bottoms nearby the underwater sewage duct of Trieste (Northern Adriatic Sea). Biologia Marina Mediterranea, 23(1), 90.

⁵³²⁵⁶ Badalamenti, F., Pinnegar, J. K., Polunin, N. V. C., D'Anna, G., 2000. Estimates of trophic level in the red mullet Mullus barbatus: comparison between gut-contents and stable isotope data. Commission Internationale pour l'Exploration Scientifique de la Mer Mediterranee, Workshop Series 12: 19–21.

^{536&}lt;sub>61</sub> Barago, N., Floreani, F., Acquavita, A., Esbrí, J. M., Covelli, S., Higueras, P., 2020. Spatial and temporal 53762 trends of gaseous elemental mercury over a highly impacted coastal environment (Northern Adriatic, Italy). Atmosphere, 11(9). https://doi.org/10.3390/atmos11090935.

540 1 Bissoli, L. B., Bernardino, A. F., 2018. Benthic macrofaunal structure and secondary production in tropical 541 2 estuaries on the Eastern Marine Ecoregion of Brazil. PeerJ 6: e4441. https://doi.org/10.7717/peerj.4441. 542 3 4 543 5 Bolam, S. G., Barrio-Frojan, C. R. S., Eggleton, J. D., 2010. Macrofaunal production along the UK continental 544 shelf. Journal of Sea Research, 64(3), 166–179. https://doi.org/10.1016/j.seares.2010.02.003. 545 7 546 8 547 Bolam, S. G., Barry, J., Bolam, T., Mason, C., Rumney, H. S., Thain, J. E., Law, R. J., 2011. Impacts of 9 54810 maintenance dredged material disposal on macrobenthic structure and secondary productivity. Marine 549¹¹ Pollution Bulletin, 62(10), 2230–2245. https://doi.org/10.1016/j.marpolbul.2011.04.012. 550¹² 13 551₁₄ Bolam, S. G., Eggleton, J. D., 2014. Macrofaunal production and biological traits: Spatial relationships along 55215 the UK continental shelf. Journal of Sea Research 88, 47–58. https://doi.org/10.1016/j.seares.2014.01.001. 55316 554¹⁷ Brey, T., Rumohr, H., Ankar, S., 1988. Energy content of microbenthic invertebrates: general conversion 555¹⁸ 555₁₉ factors from weight to energy. J Exp Mar Biol Ecol 117:271-278. https://doi.org/10.1016/0022- 556_{20}^{-1} 0981(88)90062-7. 55721 558²² Brey, T., Müller-Wiegmann, C., Zittier, Z. M. C., Hagen, W., 2010. Body composition in aquatic organisms 559²³ — a global data bank of relationships between mass, elemental composition and energy content. J. Sea Res. 560²₂₅ 64, 334–340. http://dx.doi.org/10.1016/j.seares.2010.05.002. **561**26 56227 Brey, T., 2012. A multi-parameter artificial neural network model to estimate macrobenthic invertebrate 563²⁸ productivity Oceanogr. 581-589. and production. Limnol. Methods 10. 564²⁹ 564³⁰ https://doi.org/10.4319/lom.2012.10.581. http://www.thomas-brey.de/science/virtualhandbook 565₃₁ Brown, J. B., Gowen, R. J., McLusky, D. S., 1987. The effect of salmon farming on the benthos of a Scottish **566**32 sea loch. J. Exp. Mar. Biol. Ecol., 109 pp. 39-51. https://doi.org/10.1016/0022-0981(87)90184-5. 56733 568³⁴₃₅ 569₃₆ Burd, B. J., Macdonald, T. A., van Roodselaar, A., 2012. Towards predicting basin-wide invertebrate organic 570₃₇ biomass and production in marine sediments from а coastal sea. PLoS ONE, 7(7). 57138 https://doi.org/10.1371/journal.pone.0040295. 572³⁹ 573⁴⁰ 573⁴¹ Celio, M., Comici, C., Bussani, A., 2002. Thermohaline anomalies in the spring and early summer of 2000 in 57442 the Gulf of Trieste. Marine Ecology, an Evolutionary Perspective 23, 101–110. https://doi.org/10.1111/i.1439-57543 0485.2002.tb00011.x. 57644 577⁴⁵ Clarke, K. R., Gorley, R. N., Somerfield, P. J., Warwick, R. M., 2014. An Approach to Statistical Analysis 578₄₇ and Interpretation. Change in Marine Communities, third ed. PRIMER-E, Plymouth, p. 260. 57948 58049 Clesceri, L. S., Eaton, A. D., Greenberg, A.E., Franson, M. A. H., American Public Health, A., American 581⁵⁰ Water Works, A., Water Environment, F., 1996. Standard Methods for the Examination of Water and 582⁵¹ 52 Wastewater: 19th Edition Supplement. American Public Health Association, Washington, DC. 583₅₃ 58454 Connell, J. H., Slatyer, R. O., 1977. Mechanisms of succession in natural communities and their role in **585**55 community stability and organization. Am Nat 111:1119-1144. 586⁵⁶ 580₅₇ 587₅₈ Cooper, K. M., Barrio Froján, C. R. S., Defew, E., Curtis, M., Fleddum, A., Brooks, L., Paterson, D. M., 2008. 58859 Assessment of ecosystem function following marine aggregate dredging. J. Exp. Mar. Biol. Ecol. 366, 82–91. 58960 https://doi.org/10.1016/j.jembe.2008.07.011. 61 62 63 64

Baumann, M., 1995. A comment on transfer efficiencies. Fish. Oceanogr. 4, 264–266.

65

Covelli, S., Faganeli, J., Horvat, M., Brambati, A., 1999. Porewater Distribution and Benthic Flux 590 Measurements of Mercury and Methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuarine, 591 1 Coastal and Shelf Science, 48(4), 415-428. https://doi.org/10.1006/ecss.1999.0466. 592 2 593 3 Cusson, M., Bourget, E., 2005. Global patterns of macroinvertebrate production in marine benthic habitats. 594 4 Marine Ecology Progress Series 297, 1-14. https://doi.org/10.3354/meps297001. 595 5 596 7 Degen, R., Vedenin, A., Gusky, M., Boetius, A., Brey, T., 2015. Patterns and trends of macrobenthic 597 8 598 abundance, biomass and production in the deep Arctic Ocean. Polar Res 34:24008. 9 https://doi.org/10.3402/polar.v34.24008. **599**10 60011 601¹²₁₃ Dell'Anno, A., Mei, M. L., Pusceddu, A., Danovaro, R., 2002. Assessing the trophic state and eutrophication 602_{14}^{13} of coastal marine systems: A new approach based on the biochemical composition of sediment organic matter. Marine Pollution Bulletin, 44(7):611-622. doi:10.1016/S0025- 326X (01)00302-2. **603**15 60416 **605**¹⁷ Denisenko, S., 2001. Long-term changes of zoobenthos biomass in the Barents Sea. Proc Zool Inst Russ Acad 606¹⁸ 606¹⁹ Sci 2001: 59-66. **607**₂₀ 60821 Denisenko, S. G., Titov, O. V., 2003. Distribution of zoobenthos and primary production of plankton in the 609²² Barents Sea. Oceanology 43:78-88. 610²³ 24 611₂₅ Diaz, R. J., Rosenberg, R., 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol Annu Rev 33: 245-303. **612**26 61327 614²⁸ Dolbeth, M., Lillebo, A. I., Cardoso, P. G., Ferreira, S. M., Pardal, M. A., 2005. Annual production of estuarine 615²⁹ 615³⁰ fauna in different environmental conditions: an evaluation of the estimation methods. J. Exp. Mar. Biol. Ecol. 326, 115-127. https://doi.org/10.1016/j.jembe.2005.05.010. 616₃₁ **617**32 618³³ Dolbeth, M., Cusson, M., Sousa, R., Pardal M. A., 2012. Secondary production as a tool for better 619³⁴ 35 understanding of aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 69, 1230-1253. 620₃₆ https://doi.org/10.1139/f2012-050. 62137 62238 Duineveld, G. C. A., Künitzer, A., Niermann, U., De Wilde, PAWJ., Gray, J. S., 1991. The macrobenthos of 623³⁹ the North Sea. Neth J Sea Res 28:53-65. https://doi.org/10.1016/0077-7579(91)90004-K. 624⁴⁰ 41 62542 Eddy, T. D., Bernhardt, J. R., Blanchard, J. L., Cheung, W. W. L., Colléter, M., du Pontavice, H., Fulton, E. 62643 A., Gascuel, D., Kearney, K. A., Petrik, C. M., Roy, T., Rykaczewski, R. R., Selden, R., Stock, C. A., Wabnitz, 627⁴⁴ C. C. C., Watson, R. A., 2020. Energy Flow Through Marine Ecosystems: Confronting Transfer Efficiency. **628**⁴⁵ Trends in Ecology and Evolution, 36(1), 76–86. https://doi.org/10.1016/j.tree.2020.09.006. 629_{47}^{46} 63048 El Asri, F., Martin, D., Errhif, A., Tamsouri, M.N., Maanan, M., Zidane, H., 2021. Community structure and spatial patterns of soft-bottom macrozoobenthos in Oualidia Lagoon, Moroccan Atlantic. Thalassas: An 63149 **632**⁵⁰ International Journal of Marine Sciences, 37(1), pp.119-129. https://doi.org/10.1007/s41208-020-00263-3. 633⁵¹ 52 63453 Fonda Umani, S., Malfatti, F., Del Negro, P., 2012. Carbon fluxes in the pelagic ecosystem of the Gulf of Estuarine. 63554 Trieste (Northern Adriatic Sea). Coastal and Shelf Science 115, 170 - 185.**636**55 https://doi.org/10.1016/j.ecss.2012.04.006. 637⁵⁶ 638₅₈ Fuhrmann, M. M., Pedersen, T., Ramasco, V., Nilssen, E. M., 2015. Macrobenthic biomass and production in 639_{59} a heterogenic subarctic fjord after invasion by the red king crab. J. Sea Res. 106: 1–13. 64060 https://doi.org/10.1016/j.seares.2015.09.003. **641**⁶¹ 62 63 64 65

642 Gascuel, D., Bozec, Y-M., Chassot, E., Colomb, A., Laurans, M., 2005. The trophic spectrum: theory and ICES Journal of Science. 643 application as an ecosystem indicator. Marine 62: 443-452. 1 https://doi.org/10.1016/j.icesjms.2004.12.013. 644 2 645 3 Giangrande, A., 1997. Polychaete reproductive patterns, life cycles and life histories, an overview. 646 4 647 5 Oceanography and marine Biology, 35, 323–386. 648 Gomes, L. E. O., Bernardino, A. F., 2020. Drought effects on tropical estuarine benthic assemblages in Eastern 649 8 650 9 Brazil. Sci. Total Environ. 703: 135490. doi: 10.1016/j.scitotenv.2019.135490 **651**10 652¹¹ Gray, J., Clarke, K., Warwick, R., Hobbs, G., 1990. Detection of initial effects of pollution on marine benthos: **653** an example from the Ekofisk and Eldfisk oilfields, North Sea. Marine Ecology Progress Series, 66, 285–299. 13 654₁₄ https://doi.org/10.3354/meps066285. 65515 65616 Gray, J. S., Wu, R. S. S., Or, Y. Y., 2002. Effects of hypoxia and organic enrichment on the coastal marine 657¹⁷ environment. Marine ecology progress series, 238, 249–279. https://doi.org/10.1016/j.icesjms.2004.12.013. 658¹⁰ 19 18 659₂₀ Gray, J. S., Dayton, P., Thrush, S., Kaiser, M. J., 2006. On effects of trawling, benthos and sampling design. 66021 Marine Pollution Bulletin, 52 (8), 840–843. https://doi.org/10.1016/j.marpolbul.2006.07.003. 661²² 662²³ Gray, J.S., Elliott, M., 2009. Ecology of Marine Sediments -From Science to Management. 2nd ed. Oxford 24 663²₂₅ University Press. New York, 243 pp. **664**26 66527 Hall Jr, R. O., Dybdahl, M. F., VanderLoop, M. C., 2006. Extremely high secondary production of introduced 666²⁸ snails in rivers. Ecological Applications, 16(3), pp.1121-1131. 667²⁹ 667³⁰ 66831 Hargrave, B. T., Holmer, M., Newcombe, C. P., 2008. Towards a classification of organic enrichment in 66932 marine sediments based on biogeochemical indicators. Mar. Pollut. Bull., 56, 810-824. 670³³ https://doi.org/10.1016/j.marpolbul.2008.02.006. **671**³⁴₃₅ 672₃₆ Harrison, P. J., Parsons, T. R., 2000. Fisheries oceanography: an integrative approach to fisheries ecology and 673₃₇ management. Book Review, Association for the Sciences of Limnology and Oceanography (ASLO) 46 p. 67438 1844. https://doi.org/10.1111/j.1741-6248.1997.00005.x 675³⁹ 676⁴⁰₄₁ Harvey, C. J., Cox, S. P., Essington, T. E., Hansson, S., Kitchell, J. F., 2003. An ecosystem model of food 677₄₂ web and fisheries interactions in the Baltic Sea. ICES J Mar Sci 60:939–950. https://doi.org/10.1016/S1054-67843 3139(03)00098-5. 67944 **680**⁴⁵ Hiddink, J. G., Hutton, T., Jennings, S., Kaiser, M. J., 2006. Predicting the effects of area closures and fishing 681₄₇ effort restrictions on the production, biomass, and species richness of benthic invertebrate communities. ICES J Mar Sci 63:822–830. https://doi.org/10.1016/j.icesjms.2006.02.006. **682**₄₈ 68349 **684**⁵⁰ Hinchey, E. K., Schaffner, L. C., Hoar, C. C., Vogt, B.W., Batte, L. P., 2006. Responses of estuarine benthic 685_{52}^{51} invertebrates to sediment burial: the importance of mobility and adaptation. Hydrobiologia; 556:85–98. 68653 https://doi.org/10.1007/s10750-005-1029-0. **687**54 688⁵⁵ Hyland, J., Balthis, L. W., Karakassis, I., Magni, P., Petrov, A., Shine, J. R., Vestergaard, O., Warwick, R. 689⁵⁶ 2005. Organic carbon content of sediments as an indicator of stress in the marine benthos. Marine Ecology 690₅₈ Progress Series, 295: 91-103. https://doi.org/10.3354/meps295091. 69159 69260 Ieromina, O., Musters, C. J. M., Bodegom, P. M., Peijnenburg, W. J. G. M., Vijver, M. G., 2016. Trait modality 693⁶¹ distribution of aquatic macrofauna communities as explained by pesticides and water chemistry. 694⁶² Ecotoxicology, 25(6), 1170-1180. https://doi.org/10.1007/s10646-016-1671-5. 63 64 65

Jennings, S., Dinmore, T. A., Duplisea, D. E., Warr, K. J., Lancaster, J. E., 2001a. Trawling disturbance can 695 modify benthic production processes. J Anim Ecol 70:459-475. https://doi.org/10.1046/j.1365-696 1 2656.2001.00504.x. 697 2 698 3 699 Jennings, S., Pinnegar, J. K., Polunin, N. V. C., Warr, K. J., 2002. Linking size-based and trophic analyses of 4 benthic community structure. Mar Ecol Prog Ser 226:77-85. https://doi.org/10.3354/meps226077. 700 5 701 Jumars, P. A., Dorgan, K. M., Lindsay, S. M., 2015. Diet of worms emended, an update of polychaete feeding 702 8 703 9 guilds. Annual review of marine science, 7, 497-520. https://doi.org/10.1146/annurev-marine-010814-020007 70410 705¹¹ Kabat, P., Bazelmans, J., van Dijk, J., Herman, P.M.J., van Oijen, Y., Pejrup, M., Reise, K., Speelman, H., **706**¹²₁₃ Wolff, W. J., 2012. The Wadden Sea region: towards a science for sustainable development. Ocean Coast 707₁₄ Manage 68: 4-17. https://doi.org/10.1016/j.ocecoaman.2012.05.022. **708**15 70916 Kerr, S. R., 1974. Theory of size distribution in ecological communities. J Fish Res Board Can 31:1859–1862. **710**¹⁷ https://doi.org/10.1139/f74-241. **711**¹⁸₁₉ 712₂₀ Kimmerer, W. J., 2006. Response of anchovies dampens effects of the invasive bivalve Corbula amurensis on the San Francisco Estuary foodweb. Marine Ecology Progress Series, 324, pp.207-218. **713**21 714²² **715**²³ Kröncke, I., Stoeck, T., Wieking, G., Palojärvi, A., 2004. Relationship between structural and trophic aspects 716₂₅ of microbial and macrofaunal communities in different areas of the North Sea. Mar Ecol Prog Ser 282:13-31. https://doi.org/10.3354/meps282013. **717**26 71827 719²⁸ Kutti, T., Ervik, A., Hoisaeter, T., 2008. Effects of organic effluents from a salmon farm on a fjordic system. **720**²⁹₃₀ III. Linking deposition rates of organic matter and benthic productivity. Aquaculture 282, 47-53. 721₃₁ https://doi.org/10.1016/j.aquaculture.2008.06.032. **722**32 723³³ Last, K. S., Hendrick, V. J., Beveridge, C. M., Davies, A. J., 2011. Measuring the effects of suspended **724**³⁴ particulate matter and smothering on the behaviour, growth and survival of key species found in areas 35 725₃₆ associated with aggregate dredging. Report for the Marine Aggregate Levy Sustainability Fund, Project MEPF 726₃₇ 08/P76, 69p. 72738 **728**³⁹ Libralato, S., Coll, M., Tudela, S., Palomera, I., Pranovi, F., 2008. Novel index for quantification of ecosystem **729**⁴⁰₄₁ effects of fishing as removal of secondary production. Marine Ecology Progress Series, 355, 107-129. 730₄₂ https://doi.org/10.3354/meps07224. **731**43 732⁴⁴ Libralato, S., Solidoro, C., 2010. Comparing methods for building trophic spectra of ecological data. ICES **733**⁴⁵ Journal of Marine Science, 67(3), 426-434. https://doi.org/10.1093/icesjms/fsp249. 734₄₇ 73548 Lin, H., Wang, J., Liu, K., He, X., Lin, J., Huang, Y., Zhang, S., Mou, J., Zheng, C., Wang, Y., 2016. Benthic 73649 macrofaunal production for a typical shelf-slope-basin region in the western Arctic Ocean. Continental Shelf 73750 Research, 113, 30–37. https://doi.org/10.1016/j.csr.2015.12.001. **738**⁵¹ 52 739₅₃⁻ Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology, 23: 399–417. 74054 74155 Link, J. S., Pranovi, F., Libralato, S., Coll, M., Christensen, V., Solidoro, C., & Fulton, E. A., 2015. Emergent 742⁵⁶ properties delineate marine ecosystem perturbation and recovery. Trends in ecology & evolution, 30(11), 649-**742**₅₇ **743**₅₈ 661. https://doi.org/10.1016/j.tree.2015.08.011. 74459 74560 Link, J. S., Watson, R. A., 2019. Global ecosystem overfishing: clear delineation within real limits to 74661 production. Sci. Adv. 5, eaav0474. https://doi.org/10.1126/sciadv.aav0474. **747⁶²** 63 64 65

107740, https://doi.org/10.1016/j.ecss.2021.107740. 754 7 Malačič, V., 1991. Estimation of the vertical eddy diffusion coefficient of heat in the Gulf of Trieste (Northern 755 9 Adriatic). Oceanologica Acta, 14 (1): 23-32. https://archimer.ifremer.fr/doc/00101/21253/ **756**10 75711 **758**¹² Matijević, S., Kušpilić, G., Kljaković-Gašpić, Z., 2007. The redox potential of sediment from the Middle **759**¹³₁₄ Adriatic region. Acta Adriatica, 48(2), 191–204. **760**15 76116 McLusky, D. S., McIntyre, A. D., 1988. Characteristics of the benthic fauna. In: Potsma H, Zijlstra JJ (eds) **762**¹⁷ Continental shelves. Elsevier, Amsterdam, 131–154. **763**¹⁸ **764**¹⁹₂₀ Melis, R., Celio, M., Bouchet, V. M., Varagona, G., Bazzaro, M., Crosera, M., Pugliese, N., 2019. Seasonal 765_{21}^{-2} response of benthic foraminifera to anthropogenic pressure in two stations of the Gulf of Trieste (northern 76622 Adriatic Sea, Italy): the marine protected area of Miramare versus the Servola water sewage outfall. 767²³ Mediterranean Marine Science, 20(1), 120-141. https://doi.org/10.12681/mms.16154. 768²⁴ 25 **769**²₂₆ Mistri, M., Ceccherelli, V. U., 1994. Growth and secondary production of the Mediterranean gorgonian 770₂₇ Paramuricea clavata. Marine Ecology Progress Series 103, 291–296. 77128 **772**²⁹ Möller, P., 1985. Production and abundance of juvenile Nereis diversicolor, and orogenic cycle of adults in 773₃₁ of western Sweden. J Biol Assoc UK 65:603-616. shallow waters Mar **774**₃₂ https://doi.org/10.1017/S0025315400052450. **775**33 776³⁴ Moore, J. K., Fu, W., Primeau, F., Britten, G. L., Lindsay, K., Long, M., 2018. Sustained climate warming **777**³⁵ drives declining marine biological productivity. Science, 359 (6380).1139-1143. 36 **778**37 https://doi.org/10.1126/science.aao6379. **779**38 78039 Mouillot, D., Spatharis, S., Reizopoulou, S., Laugier, T., Sabetta, L., Basset, A., Do Chi, T., 2006. Alternatives **781**⁴⁰ to taxonomic-based approaches to assess changes in transitional water communities. Aquat Conserv 16:469– **782**⁴¹₄₂ 482. https://doi.org/10.1002/aqc.769. **783**₄₃ 78444 Nasi, F., Auriemma, R., Bonsdorff, E., Cibic, T., Aleffi, I. F., Bettoso, N., Del Negro, P., 2017. Biodiversity, 785⁴⁵ feeding habits and reproductive strategies of benthic macrofauna in a protected area of the northern Adriatic **786**.46 Sea: a three-year study. Mediterranean Marine Science, 18(2), 292-309. https://doi.org/10.12681/mms.1897. 787₄₈ 78849 Nasi, F., Nordström, M. C., Bonsdorff, E., Auriemma, R., Cibic, T., Del Negro. P., 2018. Functional 78950 biodiversity of marine soft-sediment polychaetes from two Mediterranean coastal areas in relation to **790**⁵¹ environmental Marine stress. Environmental Research, 137, 121-132. **791**⁵² 53 https://doi.org/10.1016/j.marenvres.2018.03.002 **792**₅₄ 79355 Nebra, A., Alcaraz, C., Caiola, N., Muñoz-Camarillo, G., Ibáñez, C., 2016. Benthic macrofaunal dynamics 794⁵⁶ and environmental stress across a salt wedge Mediterranean estuary. Mar. Environ. Res. 117, 21–31. **795**⁵⁷ https://doi.org/10.1016/j.marenvres.2016.03.009. **796**₅₉ 797₆₀ Nieuwenhuize, J., Maas, Y. E. M., Middleburg, J. J., 1994. Rapid analysis of organic carbon and nitrogen in 79861 particulate materials. Marine Chemistry 44, 217–224. https://doi.org/10.1016/0304-4203(94)90005-1. **799**62 63 64 65

Llopis-Belenguer, C., Blasco-Costa, I., Balbuena, J. A., 2018. Evaluation of three methods for biomass 748 estimation in small invertebrates, using three large disparate parasite species as model organisms. Sci Rep 8, 749 1 3897. https://doi.org/10.1038/s41598-018-22304-x. 750 2

3 Magni, P., Semprucci, F., Gravina, M. F., 2022. Joint analysis of macrofaunal and meiofaunal assemblages 752 4 5 improves the assessment of lagoonal environmental heterogeneity. Estuarine, Coastal and Shelf Science, 266, 753

Nilsen, M., Pedersen, T., Nilssen, E. M., 2006. Macrobenthic biomass, productivity (P/\overline{B}) and production in 800 a high-latitude ecosystem, North Norway. Marine Ecology Progress Series, 321(September), 67–77. 801 1 https://doi.org/10.3354/meps321067. 802 2 803 3 4 Nixon, S. W., 1995. Coastal marine eutrophication: A Definition, social causes, and future concerns. 804 805 5 OPHELIA 41: 199-219. https://doi.org/10.1080/00785236.1995.10422044. 806 7 Novelli, G., 1996. Gli scarichi a mare nell'alto Adriatico. Rassegna tecnica del Friuli Venezia Giulia, 3, 11-807 8 808 9 19. 80910 810¹¹ Odum, W. E., Heald, E. J., 1975. The detritus-based food web of an estuarine mangrove community. In 811¹² 13 Estuarine Research, 1, 265–286. Ed. by L. E. Cronin. Academic Press, New York. 812₁₄ 81315 Oselladore, F., Bernarello, V., Cacciatore, F., Cornello, M., Boscolo Brusà, R., Sfriso, A., Bonometto, A., 81416 2022. Changes in Macrozoobenthos Community after Aquatic Plant Restoration in the Northern Venice 815¹⁷ Lagoon (IT). International Journal of Environmental Research and Public Health, 19(8), p.4838. 816¹⁰19 https://doi.org/10.3390/ijerph19084838 **817**₂₀ 81821 Patrício, J., Neto, J. M., Teixeira, H., Salas, F., Marques, J. C., 2009. The robustness of ecological indicators 819²² to detect long-term changes in the macrobenthos of estuarine systems. Mar. Environ. Res. 68, 25-36. 820²³ https://doi.org/10.1016/j.marenvres.2009.04.001. **821**₂₅ 82226 Pauly, D., Watson, R. 2005. Background and interpretation of the "marine trophic index" as a measure of **823**27 biodiversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 360: 415-423. 824²⁸ https://doi.org/10.1098/rstb.2004.1597. 825²⁹ 825³⁰ Pearson, T. H., Rosenberg, R., 1978. Macrobenthic succession in relation to organic enrichment and pollution 826₃₁ **827**32 of the marine environment. Oceanography and Marine Biology, Annual Review, 16(January), 229–311. 82833 829³⁴ Pearson, T. H., Stanley, S. O., 1979. Comparative measurement of the redox potential of marine sediment as 35 830₃₆ a rapid means of assessing the effects of organic pollution. Mar Biol 53: 371–379. 83137 83238 Pranovi, F., Raicevich, S., Libralato, S., Da Ponte, F., Giovanardi, O., 2005. Trawl fishing disturbance and 833³⁹ medium-term microfaunal recolonization dynamics: a functional approach to the comparison between sand 834_{41}^{40} and mud habitats in the Adriatic Sea (Northern Mediterranean Sea). In American Fisheries Society Symposium, 41(545). American Fisheries Society. 835₄₂ 83643 83744 R Core Team., 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical **838**⁴⁵ Computing, Vienna. https://www.R-project.org. 839₄₇ 84048 Reiss, H., Kröncke, I., 2005. Seasonal variability of infaunal community structures in three areas of the North different environmental conditions. Estuar. Coast. Shelf Sci. 65: 253 - 274.84149 Sea under **842**⁵⁰ https://doi.org/10.1016/j.ecss.2005.06.008 843⁵¹ 52 Rhoads, D. C., McCall, P. L., Yingst, J. Y., 1978. Disturbance and production on the estuarine seafloor. 84453 84554 American Scientist 66:577–586. https://www.jstor.org/stable/27848852 84655 847⁵⁶ Rigler, F. H., Downing J. A., 1984. The calculation of secondary productivity. - In: Dowing, J. A. and F. H. 57 **848**58 Rigler (eds.), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters, 19–58. Blackwell Scientific Publications, Oxford. 84959 85060 85161 Robertson, A. I., 1979. The relationship between annual production ratio and lifespans for marine 852⁶² macrobenthos. Oecologia 38, 193-202. 64

- 853 Rosenberg, R., 2001. Marine benthic faunal successional stages and related sedimentary activity. Sci Mar 65: 107–119. https://doi.org/10.3989/scimar.2001.65s2107. 854 1 855 2
- Rouse, G. W., 2000. Polychaetes have evolved feeding larvae numerous times. Bulletin of marine Science, 856 ٦ 67(1), 391-409. 857 4 5
- Ryther, J. H., 1969. Photosynthesis and fish production in the sea. Science 166, 72-76. 859 https://doi.org/10.1126/science.166.3901.72. 860 8
- 86210 Sanders, H. L., 1956. Oceanography of Long Island sound, 1952-1954. X. The biology of marine bottom 86311 communities. Bull. Bingham Oceanogr. Collect. 15, 345-414. 864
- 13 86514 Schratzberger, M., Warr, K., Rogers, S. I., 2007. Functional diversity of nematode communities in the 368-389. 86615 southwestern North Sea. Marine Environmental Research 63(4). 86716 https://doi.org/10.1016/j.marenvres.2006.10.006. 868¹⁷
- 869¹⁸ Sharp, W. E., 1974. The dilution capacity of small streams in South Carolina, Rep. 48, Water Resour. Res. 870₂₀ Inst., Clemson Univ., Clemson, S.C.
- **872**²² Short, F. T., Wyllie-Echeverria, S., 1996. Natural and human induced disturbance of seagrasses. Environ 873²³ Conserv 23: 17–27. https://doi.org/10.1017/S0376892900038212. 24
- 874₂₅ 87526 Solis-Weiss, V., Aleffi, I.F., Bettoso, N., Rossini, P., Orel, G., 2007. The benthic macrofauna at the outfalls 876²⁷ of the underwater sewage discharges in the Gulf of Trieste (Northern Adriatic Sea, Italy). Annales Series **877**²⁸ Historia Naturalis, 17 (1), 1-16. 878²⁹ 878³⁰
- 87931 Souza, F. M., Brauko, K. M., Lana, P. C., Muniz, P., Camargo, M. G., 2013. The effect of urban sewage on 88032 benthic macrofauna: A multiple spatial scale approach. Marine Pollution Bulletin, 67(1-2), 234-240. 881³³ https://doi.org/10.1016/j.marpolbul.2012.10.021.
- **882**³⁴₃₅ 883₃₆[°] Steneck, R. S., Hughes, T. P., Cinner, J. E., Adger, W. N., Arnold, S. N., Berkes, F., Boudreau, S. A., 88437 Brown, K., Folke, C., Gunderson, L., Olsson, P., Scheffer, M., Stephenson, E., Walker, B., Wilson, J., Worm, 885³⁸ B., 2011. Creation of a gilded trap by the high economic value of the Maine lobster fishery. Conservation 886³⁹ Biology 25:904-912. http://dx.doi.org/10.1111/j.1523-1739.2011.01717.x 887₄₁
- 888₄₂ Stergiou, K. I., Karpouzi, V. S., 2002. Feeding habits and trophic levels of Mediterranean fish. Reviews in 88943 Fish Biology and Fisheries, 11: 217–254. https://doi.org/10.1111/j.1523-1739.2011.01717.x. 89044
- 891⁴⁵ Stock, C. A., John, J. G., Rykaczewski, R. R., Asch, R. G., Cheung, W. W. L., Dunne, J. P., Friedland, K. D., 46 Lam, V. W. Y., Sarmiento, J. L., Watson, R. A., 2017. Reconciling fisheries catch and ocean productivity. 89348 Proceedings of the National Academy of Sciences of the U.S.A. 114. E1441-E1449. 89449 https://doi.org/10.1073/pnas.1610238114. 89550
- 896⁵¹ 52 Tadir, R., Benjamini, C., Almogi-Labin, A., Hyams-Kaphzan, O., 2017. Temporal trends in live foraminiferal 897_{53}^{-2} assemblages near a pollution outfall on the Levant shelf. Mar. Pollut. Bull. 117 (1–2), 50–60. 89854 https://doi.org/10.1016/ j. marpolbul.2016.12.045. 89955
- 900⁵⁶ Tillin, H. M., Hiddink, J. G., Jennings, S., Kaiser, M. J., 2006. Chronic bottom trawling alters the functional 57 901₅₈ composition of benthic invertebrate communities on a sea-basin scale. Marine Ecology Progress Series, 318, 902₅₉ 31–45. https://doi.org/10.3354/meps318031.
- 90360

858

861 9

- 90461 Tumbiolo, M. L., Downing, J. A., 1994. An empirical model for the prediction of secondary production in 905⁶² 63 marine benthic invertebrate populations. Marine Ecology Progress Series 114, 165–174.
 - 64 65

Ullah, H., Nagelkerken, I., Goldenberg, S. U., Fordham, D. A., 2018. Climate change could drive marine food 906 web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biology, 16(1), 1–21. 907 1 https://doi.org/10.1371/journal.pbio.2003446. 908 2 909 3 Van Hoey, G., Degrear, S., Vincx, M., 2004. Macrobenthic community structure of soft-bottom sediments at 910 4 5 59: 911 the Belgian Continental Shelf. Estuar Coast Shelf Sci 599-613. https://doi.org/10.1016/j.ecss.2003.11.005. 912 913 8 Vesal, S. E., Nasi, F., Pazzaglia, J., Ferrante, L., Auriemma, R., Relitti, F., Bazzaro, M., Del Negro, P., 2021. 914 9 91510 Assessing the sewage discharge effects on soft-bottom macrofauna through traits-based approach. Marine **916**¹¹ Pollution Bulletin, 173, 113003. https://doi.org/10.1016/j.marpolbul.2021.113003. **917**¹²₁₃ 918₁₄ Washington, H. G., 1984. Diversity, biotic and similarity indices. A review with special relevance to aquatic ecosystems. Wat. Res., 18: 653-694. https://doi.org/10.1016/0043-1354(84)90164-7. **919**15 92016 **921**¹⁷ Waters, T. P., Crawford, G. W., 1973. Annual production of a stream mayfly population: a comparison of **922**¹⁸ 922₁₉ methods. LimnoL Oceanogr. 18:286-296. https://doi.org/10.4319/lo.1973.18.2.0286. **923**₂₀ 92421 Waters, T. F., 1977. Secondary production in Inland waters. Advances in Ecological Research 10, 91–164. **925**²² https://doi.org/10.1016/S0065-2504(08)60235-4. **926**²³ 24 927₂₅ Weston, D. P., 1990. Quantitative examination of macrobenthic community changes along an organic enrichment gradient. Mar. Ecol., Prog. Ser., 61. 233-244. **928**26 92927 930²⁸ Wetzel, M. A., Leuchs, H., Koop, J. H. E., 2005. Preservation effects on wet weight, dry weight, and ash-free **931**²⁹₃₀ dry weight biomass estimates of four common estuarine macro-invertebrates: no difference between ethanol 932₃₁ and formalin. Helgoland Marine Research 59:206-213. https://doi.org/10.1007/s10152-005-0220-z. 93332 934³³ Wieking, G., Kröncke, I., 2003. Macrofauna communities of the Dogger Bank (central North Sea) in the late 935³⁴ 1990s: spatial distribution, species composition and trophic structure. Helgol Mar Res 57: 34-46. 35 936₃₆ https://doi.org/10.1007/s10152-002-0130-2. **937**37 93838 Wilber, D. H., Clarke, D. G., 1998. Estimating secondary production and benthic consumption in monitoring 939³⁹ studies: a case study of the impacts of dredged material disposal in Galveston Bay, Texas. Estuaries 21, 230– **940**⁴⁰₄₁ 245. https://doi.org/10.1007/s10152-002-0130-2. **941**₄₂ Yeleliere, E., Cobbina, S. J., Duwiejuah, A. B., 2018. Review of Ghana's water resources: the quality and **942**43 94344 management with particular focus on freshwater resources. Applied Water Science, 8(3), 1-12. **944**⁴⁵ https://doi.org/10.1007/s13201-018-0736-4. 945₄₇ 94648 Zhang, C. L., Xu, B. D., Ren, Y. P., Xue, Y., Ji, Y. P., 2011. The spatio-temporal change in the secondary production of macrozoobenthos in the intertidal zone of Jiaozhou Bay. Acta Ecologica Sinica 31, 5071-5080. **947**49 **948**⁵⁰ (in Chinese). 949⁵¹ 52 95053 https://marinespecies.org/ **951**⁵⁴ 55 https://www.itis.gov/ 952⁵⁶ https://www.polytraits.lifewatchgreece.eu 57 953⁵⁸ https://www.sealifebase.ca/search.php 59 60 61 62 63 64 65

Table 1. Sample stations, depth range, coordinates, sampling stations distance from the pipelines, and physical-chemical parameters were measured at sampling stations in April 2018. Sediment grain-size, TN (Total Nitrogen); Corg (organic carbon); C/N (carbon and nitrogen ratio); Eh (redox potential). **956** ¹₂

Station	Depth	Latitude	Longitude	Distance from the pipeline	Sand	Silt	Clay	TN	Corg	C/N	Eh
	(m)			(m)	(%)	(%)	(%)	(mg N g ⁻¹)	(mg C g ⁻¹)		mV
0D	22.6	45°38'605"	13°40'862"	5	39.6	38	22.4	3.8	60.5	18.6	-290
0M	20.1	45°38'601"	13°41'788"	5	39.4	37.3	23.3	1.7	13.5	9.4	-25
0P	22	45°38'435''	13°41'600"	5	25.7	46.6	22.7	2.5	27.8	13	-204
1FD	22.7	45°38'601"	13°40'788"	100	9	54.3	36.7	1.9	16.7	10.1	-150
1D	23	45°38'662"	13°40'849"	100	13.6	53.3	33.1	1.8	16.8	10.8	-210
-1D	22.3	45°38'561"	13°40'872"	100	10.5	54.2	35.3	2.5	21.9	10.2	-101
1M	20.6	45°38'599"	13°41'233"	100	11.4	54.6	34	1.9	15.9	10	-117
-1M	18.3	45°38'493"	13°41'258"	100	34.9	40.8	24.3	1.3	12.3	11.3	70
1P	21.9	45°38'483"	13°41'588"	100	12.1	54.3	33.6	2.5	17.6	8.2	-57
-1P	22	45°38'989"	13°41'612"	100	17.2	50.1	32.7	2.3	16.8	8.5	-117
2FD	23.1	45°38'592"	13°40'718"	200	5.9	52.7	41.4	1.8	15.2	10	-130
2D	23.5	45°38'716"	13°40'834"	200	7	54.1	38.9	1.9	16.1	10	-150
-2D	21.9	45°38'506"	13°40'886"	200	7	54.6	38.4	1.8	16.2	10.3	-210
2M	22,00	45°38'649"	13°41'215"	200	5.7	55	39.3	1.9	16	9.7	35
-2M	18.8	45°38'441"	13°41'271"	200	21.3	48.9	30	1.6	13.3	9.9	8
2P	22	45°38'531"	13°41'576"	200	8	54.5	37.5	2.1	16.7	9.2	-15
-2P	21.4	45°38'344"	13°41'623"	200	7.8	53.2	39	1.8	14.1	9.3	-115
RS	22.5	45°37'540"	13°41'118"	2000	7	50.5	42.5	1.2	10.7	10.5	54

33

35

37

Table 2. Total Biomass-B, Production-P, Productivity-P/ \overline{B} and Transfer efficiency-TE, number of Species-Sp. and Abundance-Abu from different stations. RS was excluded to calculate the mean of each variable.

	В	Р	P/B	TE	Sp.	Abu
Station	$(kJ m^{-2})$	$(kJ m^{-2} yr^{-1})$	(yr ⁻¹)	(%)	N°	(ind. m ⁻²)
0D	5.8	3.9	0.6	17	35	1556
0M	16.3	27.4	1.6	28	76	1406
0P	8.9	5.7	0.6	8	36	343
1FD	6	7.7	1.2	13	53	916
1D	6.4	6	0.9	10	46	616
-1D	6.9	10.2	1.4	14	69	3436
1M	27.1	61.7	2.2	11	91	1679
-1M	16	27.4	1.7	14	74	1316
1P	27	54	2	11	73	1459
-1P	28.1	40	1.4	10	61	1023
2FD	12.3	11.9	0.9	17	45	426
2D	8.6	9.1	1	7	47	833
-2D	14.1	16.8	1.1	9	50	636
2M	19	28.4	1.4	18	62	1299
-2M	6.8	9.3	1.3	15	57	723
2P	24.8	40.9	1.6	17	74	1013
-2P	7.7	14.2	1.8	14	68	1513
RS	14.1	17.7	1.2	18	46	740
Means	14.2±7.9	21.7±17.3	1.3±0.4	13.9±4.9	59.0±15.4	1162.9±697.6

966⁴² 967⁴³ 968₄₅ 969₄₆

Table 3. Spearman's rank correlation coefficient (rs) for the relationship between biological factors and environmental variables. **p<0.01; *p<0.05

15 16 17 971¹⁸ 972₂₀

23	variat	p	.01, p<0.0	5									
24		Eh	C/N	Corg	TN	Clay	Silt	Sand	Sp.	Abu.	TE	P/\overline{B}	Р
25 26	В	0.448	0565*	-0.186	0.017	0.089	0.262	-0.115	0.596**	0.189	0.044	0.617**	0.923**
27	Р	0.593**	-0.656**	-0.315	-0.090	0.176	0.380	-0.180	0.771**	0.386	0.207	0.923**	
28	P/\overline{B}	0.632**	-0.630**	-0.343	-0.112	0.003	0.265	0.029	0.938**	0.658**	0.187		
29	TE	0.582*	-0.144	-0.439	-0.307	0.005	-0.200	-0.044	0 190	0.255	0.107		
31		0.362	-0.144	-0.437	-0.307	0.105	-0.20)	-0.044	0.170	0.233			
32	Abu.	0.240	-0.251	0.090	0.520	-0.212	0.079	0.255	0.625				
33	Sp.	0.589*	-0.566*	-0.294	-0.098	-0.119	0.257	0.110					
34													
973_{36}^{35}													
30													
38													
39													
40													
4⊥ 42													
43													
44													
45													
46													
47 48													
49													
50													
51													
52													
54													
55													
56													
57													
58													
60													
61													
62													
63													
64 65													
00													

Table 4. Total biomass (g ww m⁻²), production (kJ m⁻² yr⁻¹), and average production/ biomass (P/ \overline{B}) ratio (yr⁻) of benthic macrofauna from different study areas.

Study area	Biomass	Production	P/\overline{B} ratio	References
	(g ww m ²)	(KJ m ² yr ⁻¹)	(yr ¹)	
Guir of Trieste	344.2	392.3	1.3	Present study
Sørfjord, North Norway	307	nd	0.29	Nilsen et al., (2006)
Tyne/Tees	nd	19.8	1.2	Bolam et al., (2010)
Anglia	nd	99.6	1.6	Bolam et al., (2010)
Barents Sea	59.5	nd	0.3	Denisenko & Titov, (2003)
Humber/Wash	nd	47.1	1.9	Bolam et al., (2010)
Southwestern Barents Sea	nd	nd	0.25	Denisenko, (2001)
Eastern Channel	nd	180.4	1.4	Bolam et al., (2010)
Baltic Sea	53.8	nd	0.32	Harvey et al., (2003)
Western Channel	nd	94.3	1.3	Bolam et al., (2010)
Cardigan Bay	nd	196.6	1.7	Bolam et al., (2010)
North Sea, 57°N	20-90	nd	0.1 - 5.0	McLusky & McIntyre (1988)
North Sea, 51–57°N	76	nd	1.9	Duineveld et al., (1991)
Severn	nd	86.5	1.3	Bolam et al., (2010)
Irish Sea	nd	157	1.2	Bolam et al., (2010)
Cape Hatteras, USA	540	nd	1.3	Aller et al., (2002)
Minches and Malin Sea	nd	66.2	1.4	Bolam et al., (2010)
Chukchi Sea	nd	0.5-1603.1	0.2 - 1.1	Lin et al., (2016)
North Scotland Coast	nd	67.5	1.3	Bolam et al., (2010)
Beaufort Sea	nd	0.5 - 278.7	0.4–0.9	Lin et al., (2016)
English Channel	nd	75.0-350.0	nd	Cooper et al., (2008)
Porsangerfjord, North Norway	65	1744	1.02	Fuhrmann et al., (2015)

32

977³⁴ 35 **978**₃₆

979³⁷ 980³⁹ 98141

982⁴² 983⁴⁴ 45 98446 985⁴⁷₄₈

991₅₈ **992**⁵⁹ 60

994₆₃

Figure 1: Study area and location of sampling sites in the Gulf of Trieste, Italy.

Figure 2: nMDS of the 18 stations from square-root transformed abundances of 270 species and Bray-Curtis 7 similarities with the three distance groups and the reference station from the sewage discharge area indicated by different symbols and colors.

Figure 3: Bar plots showing the macrobenthic abundance (ind. m^{-2}) (a), number of species (N°) (b), biomass (kJ m⁻²) (c), production (kJ m⁻² y⁻¹) (d), P/\overline{B} (yr⁻¹) (e) and transfer efficiency (TE, %) (f), along distance gradient from the pipelines (5, 100 and 200 meters). The data are presented as means (±SD) for each of the 3 00620 groups.

Figure 4: Relationship between the values (±SE) for transfer efficiency (TE) and biomass (B) along the sewage gradient with increasing distance from the pipelines (5, 100, and 200 meters).

01129 Figure 5: Two-dimensional PCA plot of the sampling stations include stations placed at <5 m from the 30 Pipelines- group 0 of stations (0D, 0M and 0P), stations placed at 100 m from the Pipelines-group 1 of stations (1FD, 1D, -1D, 1M, -1M, 1P and -1P), stations placed at 200 m from the Pipelines- group 2 of stations (2FD, 2D, -2D, 2M, -2M, 2P and -2P) and RS, according to biological factors. The different groups are indicated with different symbols and colors.

016³⁹ Figure 6: RDA ordination diagram of biological factors (B, P, P/\overline{B} , and TE), abundance, and environmental variables (Sand, Silt, Clay, TN, Corg, C/N, and Eh) among the stations. The different groups are indicated 42 with different symbols and colors.

Figure 6.

- 169 ³ 4 170 ⁵ 6 171 8 10 173¹² 13 174¹⁴ 15 175¹⁶ 17 18

Dear MPB editorial manager,

there is no response to reviewers since there are no previous reviewers comments, only for

Language Editing Changes, that we addressed.

Best regards,

Seyed Ehsan Vesal

Declaration of interests

⊠The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

CRediT author statement:

SEV: Methodology, Formal analysis, Investigation, Writing-Original Draft; RA: Conceptualization Methodology, Formal analysis, Investigation, Writing-Original Draft; SL: Methodology, Formal analysis, Investigation; FN: Methodology, Investigation, Conceptualization; PDN: Supervision, Funding acquisition.