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Abstract: We present new advances in monitoring particulate matter (PM) in urban areas within a
participatory vehicle sensor network (VSN) that exploits the use of multiple mobile low-cost IoT
devices. These devices send geolocated PM measurements to an IT infrastructure and enabled us
to reconstruct, in real time, the spatial and temporal distribution of pollutants in the study area in
a web-based environment. The newly acquired data were integrated with independent reference
measurements available from governmental environmental agencies. We deployed the infrastructure
in the city of Trieste (Italy), since the beginning of 2021, with the help of several volunteers and the
local transportation authority (Trieste Trasporti). By analysing the data, we delineate areas with
lower air quality and identify the possible causes of these anomalies. We were able to define a belt
outside the urban center where an enhanced concentration of pollutants occurs due to a higher flux
of vehicular traffic that tends to jam there. Overall, our results demonstrate that this approach can be
helpful in supporting urban planning and can also stimulate the community to reflect on how they
can improve air quality in the area they live by reducing the use of private cars in favour of more
widespread public transportation usage.

Keywords: citizen science; particulate matter; air quality; IoT; low-cost sensors

1. Introduction

Air pollution is the contamination of the environment by chemical, physical, or biolog-
ical agents that modify the natural characteristics of the atmosphere.

Respiratory diseases, including asthma and chronic obstructive pulmonary disease,
are responsible for approximately 10% of non-communicable diseases deaths [1]. Exposure
to air pollution may increase the risk of pulmonary infection [2]. This is particularly
evident for long-term exposure to particulate matter (PM) and nitrogen dioxide (NO2) [3,4],
while concerns have been highlighted by several authors regarding the possible correlation
between COVID-19 occurrence and air quality [5].

Air pollutants are commonly differentiated as outdoor or indoor. Outdoor pollutants
are caused by fossil fuel or biomass combustion, automobile exhaust fumes, wind-blown
dust, and industry and construction emissions. Indoor pollutants are released while
cooking or heating, from cigarette smoke, or household cleaning. Sources of air pollution
are not homogeneously distributed geographically. Some authors report on differences
between low-income and high-income countries and between urban and rural areas [6].

Natural factors, such as topography, meteorological conditions, and land cover type
exert great influence over the processes of diffusion and elimination of air pollutants [7].
Megaritis et al. [8], for example, highlight the influence of temperature on the secondary
products of particulate matter, while Alvarez et al. [9] correlate particulate matter con-
centrations with topography. The concentration of air pollutants can therefore be highly
dependent on the specific setting of the designated area, so that, where natural factors show
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significant gradients, high resolution studies are needed to better understand and model
phenomena [10].

PM is a mixture of organic and inorganic solid particles and liquid droplets suspended
in air that is classified based upon the size of its particles. Larger particles with a size less
than 10 µm are classified as PM10, smaller particles with a size up to 2.5 µm are classified
as PM2.5, while the ultrafine fraction contains particles smaller than 0.1 µm.

The classification of PM based upon its diameter is based on its aerodynamic properties.
This is because aerodynamic properties control the transport and removal of particles
from the air and, importantly, they also control the deposition of PM within the human
respiratory system [11]. Significant studies exist on the effects of PM on health, such as [12],
which asserts that the risk of cardiopulmonary mortality is already elevated at PM2.5 levels
of 10 µg/m3. Larger PM particles contain dust from roads and industries, while the fine
particles are primarily produced during biomass and fossil fuel combustion [11,12].

Air quality is generally assessed by governmental environmental agencies through
ground-based monitoring stations that use high accuracy and precision devices that are
deployed in a network of fixed positions. These stations are generally sparse because
the costs of instrumentation and logistics are very high. Uncovered areas and regional
scenarios are estimated using statistical interpolation methods [13] and/or modelling [14].

In highly dynamic environments this can be problematic. At the end of 1990, Irwin [15]
introduced, in scientific research, a new approach based on the possibility of enrolling
volunteers with no specific scientific competence. Following [16], this new approach
is particularly suitable for data acquisition activities. With slight differences, this new
paradigm can be declined as citizen science or crowdsensing [17]. Citizen science refers
to the case where laypeople are involved in research activities while being enabled to
build their knowledge on a specific scientific topic. Crowdsensing, instead, focusses on the
opportunistic use of volunteers as acquisition platforms. Volunteers can be private citizens,
but also larger communities, and in this sense crowdsensing can also be based on the help
of private or public companies interested in contributing to scientific research.

Opening science to the contribution of the society at large is extremely important
since this allows one to contrast ‘fake news’ that very easily and quickly circulates in social
media [18,19]. Citizen science and crowdsensing have been progressively used in more and
more scientific fields, such as archeology [20], epidemiology [21], and the environmental
sciences [22]. The crowdsensing approach has also been adopted by our team in previous
projects devoted to monitoring the environment [19,23–25].

This paper focuses on the application of the crowdsensing paradigm to real-time
monitoring of PM concentrations using mobile acquisition platforms in order to identify
areas with lower air quality and figure out possible causes of these anomalies.

Related Work

The recent introduction of low-cost sensors (LCS) has expanded the possibilities for
air quality monitoring. LCSs allow one to gather high-resolution spatial and temporal
data from numerous individual nodes, which allows for better interpolation of sparse data
and the generation of denser maps of air quality. These denser geographic distributions
can become very good estimates of real-life pollution–dispersion scenarios [26]. LCSs
are based on optical particles counters (OPCs) [27] and solid-state sensors [28]. LCS
technologies for air quality monitoring advanced quickly, producing an already significant
literature [29–32]. At the same time, the availability of LCSs has enabled a large number
of participatory monitoring initiatives such as Sensor.Community [33] and Airflux [34].
These initiatives will increasingly involve citizens in the activity of collecting data on air
pollution while allowing them to develop a correct view on the environmental phenomena
that surround them. The environmental awareness resulting from citizens’ participative
research will allow them to take an active part into tackling issues such as urban traffic or
house heating emissions.
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Following [35], participatory air quality monitoring initiatives can be divided into
three main categories, namely: the (i) static sensor network (SSN); the (ii) community
sensor network (CSN); and the (iii) vehicle sensor network (VSN). SSN is the case where
wireless sensors are deployed at fixed positions. Examples of this type of deployment
are [36] or [37]. CSN is the case where sensors are carried by users and are connected to
their mobile phones, such as in the system described by [38]. VSN is the case where sensors
are mounted on voluntary mobile platforms such as bicycles, cars, or buses. Most of the
existing literature reports on SSN and CSN systems [35], while only a few VSN systems
have been developed. Examples of this deployment type can be found in [39–41].

When comparing the three approaches, VSN has the advantage of considerably im-
proving redundancy, resolution, and both geographic and temporal coverage, while using
less resources.

2. Materials and Methods

Within this work, we have developed a real-time and low-cost air quality VSN system
that covers the whole path from data acquisition to data access and web-mapping. The
system is named “COCAL”, after the dialectal term used for seagulls in the city of Trieste
(Italy), where it has been first deployed and used [25]. COCAL consists of a set of crowd-
sensing low-cost internet of things (IoT) devices installed on voluntary mobile platforms
(COCAL boxes). These boxes send geolocated PM measurements to an information technol-
ogy (IT) infrastructure that can reconstruct, in real time, a web based interactive geographic
map of the distribution of pollutants in the designated area (Figure 1).
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Figure 1. Scheme of the COCAL system and infrastructure. COCAL boxes are installed on buses and
cars that contain air quality sensors and transmission devices. Data is transmitted through the mobile
phone network and sent to an OGS storage and processing facility. Data products are visualized on
the project’s web portal (https://cocal.ogs.it accessed on 1 November 2022).

2.1. Sensors

Traditional PM monitoring techniques, such as filters and gravimetric mass detection,
are very expensive and need trained personnel and controlled procedures to correctly oper-
ate them. Providing such sensors to volunteers with no specific skills can be demotivating.
In addition, installing fragile apparels in rough environments can increase costs unpre-
dictably. LCSs are therefore needed. Unfortunately, LCSs suffer from intrinsic limitations
in precision and accuracy.

Several products are available on the market and have been used and analyzed in
a considerable amount of studies [22,23,42,43]. These authors demonstrated that, among
LCSs, the nominal precision and accuracy of the specific brand and model of sensors can be
as relevant as other external factors. The intrinsic limitations of the technology employed,
the issues related to the deployment in the designated environment, and the environmental
conditions can collectively introduce large errors that are very difficult to identify and
prevent. It is important to note, for example, that this class of sensors is not equipped
with sample conditioning devices. This has the effect that environmental conditions and

https://cocal.ogs.it
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relative humidity (RH), in particular, can affect hygroscopic growth of particles and bias
measurements [30].

In this work, we use the SDS011 PM sensor from Nova Fitness Co.Ltd., which allows
us to measure, at the same time, both PM2.5 and PM10 values. In order to monitor
the environmental conditions in which the acquisition takes place, we use temperature,
pressure, and RH sensors both outside and inside the COCAL box.

A detailed comparison between the performances of the SDS011 sensor and other
similar sensors in controlled laboratory conditions can be found in [42]. These authors
conclude that this model of sensor is suitable for air monitoring projects based on the
crowdsensing approach. The same authors also carefully consider the limitations of these
devices, maintaining that the precision is good while the accuracy is insufficient. In detail,
this sensor tends to underestimate PM concentrations but correctly follows trends and
highlights local anomalies.

To improve the accuracy of LCSs, several methods have been proposed. After an
extensive survey of the existing literature on this topic, [44] maintains that only very
seldomly such corrections are applied. The same author indicates that these methods are
based on the use of parameters that are difficult to estimate in real life and maintains that
it is also difficult to accumulate knowledge from different cases and use values obtained
from one area in another area.

2.2. Data Processing and Access

To improve the performances of our system, we devised a pragmatic two step strategy.
The first step consists of automatically flagging measurements acquired in the case of
problematic environmental conditions, such as when RH exceeds 70%. Thresholds are set
considering the nominal technical specifications provided by the manufacturer. The second
step consists in calculating the daily deviation between an official reference station and a
co-located COCAL box. Since LCSs behave consistently among them, the correction can
be propagated from the co-located COCAL box to the other COCAL boxes following the
procedures described in [45]. The effects of the application of the corrections can be seen in
Figure 2. On the left is the PM10 distribution without correction, and on the right is the
PM10 distribution after the corrections.
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Once measurements have been corrected to improve LCS performances, a geographical
grid of 200 × 200 m cells is superimposed on t sampling points’ distribution. Considering
the measurements timeline, this is segmented into 1-h intervals, so that every set of data
spanning a spatial cell and a time interval becomes a datacube. Each datacube contains
measurements from different devices but refers to the same kind of sensor (e.g., PM10 or
temperature). The median value of the data in each datacube is then calculated and assigned
to the grid cell. This reduces the outliers, smooths values, and better represents the physical
phenomena under study. A discussion on the advantages of averaging and gridding can
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be found in [45]. The output grid then becomes the geographic distribution of the specific
parameters in the designated area in the chosen time range (Figure 2). Datacubes over
longer time intervals, such as 2, 3, 4, or 8 h, are processed once a day and made available
the following day.

It is important to mention that COCAL is a fully operative system that was deployed
in February 2021 and has remained functional ever since. This demonstrates the feasibility,
affordability, robustness, and solidity of the approach adopted. All data and data prod-
ucts are accessible through the interactive web portal https://cocal.ogs.it accessed on 30
October 2022. The system is fully compliant with FAIR principles and follows ISO and
OGC standards.

2.3. Deployment and Coverage

Currently the COCAL network is based on five platforms installed on cars and five
platforms installed on buses of the local transportation authority Trieste Trasporti. In both
cases, we developed a tailored waterproof box that can be easily installed on any of the
vehicles. COCAL acquisition platforms travel in the designated area with no predetermined
planning. This does not mean, unfortunately, that the points of measurement follow a
random geographic distribution. As a matter of fact, biases can be introduced depending
on several factors such as timing, the road network, and the needs of the vehicle owners.

Regarding timing, buses have great advantages over cars. Buses cover a wide operat-
ing time, every day of the year, from five a.m. to midnight. The number of buses travelling
at the same time can vary depending on the possible need for maintenance, while only
seldomly does the number of active buses drop below 3 units.

Cars, to the contrary, are largely dependent on owners’ availability, which in our
experience was not easy to organize. Eventually cars were not used daily, but rather, in
specific time-limited periods (marathons). These marathons were planned in order to
increase resolution in areas where sampling from the bus network was too coarse, or to
study specific phenomena.

Regarding the spatial distribution of measurements, buses and cars behave differently.
Buses follow predefined routes (bus lines) that are set up according to the socio-economic
features of the urban area. If the bus network is limited geographically, or if it favors certain
areas at the expense of others, then the coverage will be uneven. During the same day, each
coach can be reassigned to different routes so that it can cover multiple areas of the city
and the hinterland while still being limited by the bus line network.

Cars theoretically do not follow predefined routes, while this is often not the case if
the data acquisition is opportunistic. In fact, when this approach is used, car owners will
tend to follow their everyday schedule so that, similarly to the case of buses, a pattern
will inevitably emerge. This trend can be mitigated during marathons when volunteers
are asked to follow indications provided by the organizing team. Of course, this limits the
freedom of participants with the risk of demotivating them [46–48].

To understand how the sampling points are spatially distributed over the designated
area, we will analyze measurements acquired during one single day (26 January 2022),
comparing the full dataset with the separate contributions of cars and buses. After having
projected the geographic position of point measurements using the EPSG:3857 spatial refer-
ence system, a first analysis of the spatial distribution of measurements can be performed by
calculating the Euclidean distance (d). If, as sources we mean the location of the sampling
points, the d output raster contains the measured distance from every cell to the nearest
source. This map provides indications on the coverage of the designated area [49]. Where
the value of d is high, sources are far from the cell position. In other words, there are gaps
in the coverage. Figure 3 maps d overlaid on the road network of the City of Trieste for
three cases. Figure 3 maps d for the total dataset, Figure 3 maps d only for cars, and Figure 3
maps d for buses only. Areas in green correspond to values of d that are less than 500 m and
can be interpreted as areas that have a high coverage, whereas areas in yellow correspond
to d ranges between 500 and 1000 m. There, coverage starts to be problematic. Cells where

https://cocal.ogs.it
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d is between 1000 and 1500 m are essentially gaps in the coverage and are drawn in red. In
Figure 3, the map of the overall survey shows that the city center is generally well covered.
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Figure 3. Maps of Euclidean distance in the designated area calculated using the (TOTAL) full
dataset, (BUSES) buses-only dataset, and (CARS) cars-only dataset. Light blue arrows mark gaps
in the geographic coverage of the dataset collected by buses only. These gaps can be in-filled using
the dataset collected by cars. The blue arrows mark a steep slope zone where no road can be used to
collect data and therefore remain uncovered.

Focusing on the dataset collected by buses only (Figure 3), it is possible to see that
the extension of the covered area is smaller than that sampled by cars. This is due to the
current limited number of buses equipped with COCAL boxes. Increasing the number of
installations can considerably improve the extension of the covered area. Figure 3 shows a
couple of uncovered areas marked with light blue arrows. These spots are not present in
Figure 3 because, differently from buses, cars were able to survey these areas. By gathering
all the data available from both buses and cars, the full dataset map of d shows that gaps in
buses coverage have been filled. It may be useful to analyze another type of gap such as
that highlighted with a blue arrow in Figure 3. That area corresponds to a very steep slope
where no road is present. No measurements can, therefore, be taken in that area using a
VSN approach.

In order to understand how measurements are distributed, it is necessary to study the
point density in the area. The point density is calculated by setting a neighborhood around
each raster cell center, totaling the number of points that fall within the neighborhood,
and dividing this value by the area of the neighborhood. The point density allows one to
highlight cells where a higher number of measurements have been taken. Figure 4 shows
the point density of measurements taken during the same single day of Figure 3 overlaid
on the road network of the city of Trieste. Higher values of density are drawn in yellow
and red.
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There may be multiple explanations for high concentrations of points in specific areas.
Data can be gathered simultaneously from multiple acquisition platforms surveying the
same area (this is the case for popular traffic routes). Another possible explanation could
be that platforms stop in one area for longer periods of time (this is, for example, the
case for a bus line terminus, bus stops, traffic lights, or traffic jams). Figure 4 shows the
density of the full dataset, Figure 4 the density of measurements taken with buses only,
and Figure 4 shows measurements taken with cars only. The density of buses is very high
(Figure 4—yellow and red areas), which guarantees that statistics are good. At the same
time, the map shows that the geographic extension of the distribution of measurements
is rather limited. This is coherent with the results of the analysis of Euclidean distances.
Contrary to the case of buses, the extension of the distribution of measurements conducted
with cars is wide, while the point density is much lower (Figure 4—green areas). It is easy
to see that, even if the distributions of the points of measurements are different, both maps
of buses and cars closely follow the road network.

It is possible to say that, while the overall coverage is good (Figure 4), large gaps exist
where specific areas are not covered by roads.

So far, we have studied the Euclidean distance, which provides information on the
coverage of the designated zone and the point density, which allows us to understand
whether a sufficient number of measurements have been taken in an area. It is possible
to make a further step and study how these measurements are distributed in terms of
dispersion or clustering of measurement points. Dispersion corresponds to the case where
an area is surveyed using a randomly distributed set of measurement points. Clustering
corresponds to the case where sampling points are unevenly distributed. A first estimate of
the type of distribution in a dataset can be derived by calculating p-values and z-scores. The
p-value is the probability that the observed spatial pattern was created by some random
process. A small p-value means that the observed spatial pattern is not the result of random
processes. The z-score is the standard deviation of the real values from the mean value.

Very high or very low (negative) z-scores, associated with very small p-values, are
found in the tails of the normal distribution. This indicates that it is unlikely that the
observed spatial pattern reflects a theoretical pattern representing a complete spatial ran-
domness point process (CSR).



Remote Sens. 2022, 14, 5576 8 of 18

We calculated p-values and z-score for the same three datasets used for the Euclidean
distance and density analysis. We obtained that the full dataset shows p-value = 0.0 and
z-score. = −171.7, the buses dataset shows p-value = 0.0 and z-score = −173.7, and the cars
dataset shows p-value = 0.0 and z-score =−51.7. Although all three cases can be interpreted
as clustered, there are differences among them. In particular, the dataset acquired with cars
is less clustered than the dataset acquired with buses. This is rather simple to explain in
light of the fact that buses follow predefined bus lines, while cars have more degrees of
freedom. The high z-score calculated for the car traffic witnesses, at the same time, that cars
cannot randomly sample an area since they are bound to a road network that will cluster
the distribution of measurement points.

In order to understand how this bias affects the distribution of points in terms of dis-
persion and clustering, we studied the Ripley’s K function of the three datasets previously
analyzed. The Ripley’s K function is used to compare a point pattern with a CSR point
distribution over a range of distances. In Figure 5, Ripley’s K functions are plotted in light
blue for buses, in orange for cars, and in green for the full dataset.
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The high L(t)-t values of all three cases show that all the geographic distributions of
measurement points are highly clustered, while, if we also go into details in this analysis,
similarly and consistently with p-values and z-scores analysis mentioned above, different
behaviors can be identified for cars and buses. The dataset acquired by cars is generally
less clustered than that acquired by buses. Buses show increasing values as a function of
distance, while cars’ values are initially higher but soon decrease with distance. The specific
behavior of cars and buses for smaller distances probably has to deal with the different
frequency of stop-and-go in the city center. Bus stops, traffic lights, and other causes can
push measurements into clusters.

A detailed analysis of these phenomena is beyond the scope of this paper and, in
addition, it must be highlighted that these studies have some limitations. Ripley’s K analysis
is, in fact, possible under the null hypothesis and the hypothesis of process stationarity [50].
It is easy to understand that both conditions are hardly satisfied in a VSN case.

The stationarity condition is particularly difficult to be met since dynamic weather
conditions or the changes in position and dimension of a pollution plume can deeply
challenge the assumptions made.

COCAL superimposes on the point distribution of measurements a regular square
grid of 200 × 200 m cells. Cell dimensions were chosen using the maximum speed in
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urban areas (50 km/h) and the rate of measurement of COCAL boxes, which is 10 s. The
theoretical distance between measurements was then calculated in approximately 15 m. A
statistical analysis of the data acquired showed that the observed mean distance between
measurements is 14.58 m, which is very close to the theoretical one. This distance guarantees
that the number of measurements in each cell is approximately 10 to 12, which guarantees
that averaging data within each cell is statistically feasible. Lower vehicle velocities allow
one to collect more data, thus increasing redundancy, while higher vehicle velocities can be
problematic. COCAL automatically detects these anomalies and flags the corresponding
measurements.

The current deployment of COCAL consists of a dozen platforms. As we have shown,
this imposes limitations on the covered area and the density of measurements. Increasing
the number of platforms deployed can improve the situation. In this perspective, COCAL
has been devised in order to be easily scaled to larger areas and to a larger number of
acquisition platforms. Limitations in this sense can be related to three types of problems,
namely: (i) the number of active COCAL boxes; (ii) the limitations related to the IT infras-
tructure; and (iii) the extension of the designated area. Increasing the number of active
COCAL boxes is not only a technological issue because volunteers have to be enrolled and
motivated while a congruent number of devices have to be assembled. This is not easily
managed by a research institution, so possible collaborations with governmental or private
organizations would definitely be helpful in this sense.

From an IT point of view, COCAL is fully integrated with real-time crowdsensing
infrastructure run by Istituto Nazionale di Oceanografia e di Geofisica Sperimentale—OGS.
This infrastructure manages several other types of environmental parameters, such as sea
water quality [19,23] and urban and underwater anthropic noise [24]. Regular monitoring
of the infrastructure has been implemented since the beginning of the project. From our
experience, the stress that the COCAL initiative imposed on the infrastructure was minimal.
We calculated that scaling the number of acquisition platforms by two orders of magnitude
will not excessively impact the system. Scaling the initiative in order to extend the surveyed
area is a more complicated topic since this implies that choices in the actual target of the
study have to be made. Studying other cities to reconstruct the local pattern of traffic
pollution there, for example, will be different from planning a regional survey. Different
acquisition and IT strategies can be explored, in this sense, that are beyond the scope of
this work.

3. Results

The technology behind COCAL was developed during 2020. During an initial phase,
the trials took place using multiple simultaneous acquisition and transmission platforms
mounted on vehicles operated by our institution. This allowed us to extensively test the
system, its scalability, precision, and accuracy during specific targeted surveys. Once the
system was finalized, we were able to deploy a fully operative system on vehicles of the
local transportation authority (Trieste Trasporti) and on some voluntary cars. COCAL
entered into service in February 2021 and has been fully operative ever since. Its data
are fully public and can be accessed using standardized procedures from the COCAL
web portal.

The main results of the work are, on one hand, the COCAL system itself and, on the
other, the availability of a very large quantity of environmental measurements. COCAL
was demonstrated to be efficient, robust, and easy to install and maintain, thus allowing
a very high throughput of environmental data. COCAL strongly confirms that low-cost
participative systems are suitable for monitoring air quality, although some precautions
must be considered.
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The availability of a very large quantity of environmental measurements allowed us
to significantly increase the spatial and time coverage of the distribution of air pollutants in
the designated area. This has made it possible to identify numerous interesting trends and
local anomalies. In the following, we report on some applications that were foreseen and
applied to the designated area, which have given encouraging results.

3.1. The Designated Area

The COCAL air quality system has been deployed in the urban and hinterland area
of the city of Trieste (Italy), located at the northmost tip of the Adriatic Sea. The city hosts
approximately 200,000 inhabitants, several industries, and one of the most active ports in
the northern Adriatic Sea. From a topographic point of view, the area can be divided in
two parts, namely: (i) the Karst plateau and (ii) the urban centre and outskirts. The Karst
is the northwesternmost part of the External Dinarides that forms an NW–SE oriented
anticlinorium [51] located at about 350 m above the sea level. The city and its industrial
area, instead, lie mostly at the sea level. The area is formed mainly by limestones with a
lack of surface waters. The slope between the plateau and the city in some areas can be very
steep. Differences in the distribution of vegetation exist between the plateau and the urban
area. This is known to have an effect on the distribution of PM and health stressors [52,53].

Relationship between Particulate Matter Distribution and Weather Condition

The designated area is generally characterised by a mild Mediterranean climate
with frequent events of strong and cold northern to north-eastern katabatic wind called
“Bora” [28]. The Bora can reach speeds of up to 170 km/h and can blow for several days.
When these events take place, the city is swept from the hills to the sea with the effect that
the polluted air masses are removed from the city area. As a consequence, the air quality
in the urban area improves dramatically. On the contrary, when south-west to north-east
winds are prevalent, the polluted air masses remain trapped because they find an obstacle
in the hills’ slope. As a consequence, pollutants produced in the urban area and nearby
industrial zones tend to accumulate. Rainfall can also improve air quality through the
below-cloud aerosol scavenging process by precipitation [27,54].

In order to highlight the importance of the weather conditions on the distribution of
PM, we correlated the time series from a local meteo station (CNR-ISMAR, Molo Fratelli
Bandiera (M.F.B.)) with PM time series measured at the COCAL station collocated with the
governamental reference station. In Figure 6, PM10 values are drawn in red, wind speed in
blue, wind direction in green, and rainfalls in black. It must be noted that, in the period of
the experiment, rainfalls were very rare. This allowed us to isolate the interactions among
the speed and direction of the wind with the concentration of PM. The Bora regime (NE)
is identified by direction values ranging from 60 to 100 degrees and by a generally higher
wind speed. It can be seen (highlighted by the light blue boxes in Figure 6) that, when the
Bora speed increases, the level of PM dramatically drops. In different weather conditions,
PM levels tend to increase progressively.
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3.2. Near Real-Time Local Events Monitoring

COCAL is a near-real time system that allows one to highlight anomalous events
almost immediately so that dangerous situations can be handled as soon as possible. In the
example of Figure 7, urgent roadworks had to be conducted on a heavily trafficked street.
Closing it during the day would have resulted in long queues to access the city center. In
order to avoid this situation, roadworks were moved to the evening. COCAL correctly,
and with great precision, detected the anomaly. The dust resulting from roadworks can be
easily identified in Figure 7 (upper left, area in red). After having spotted the situation, dust
control measures in the following hours allowed the mitigation of the effects of roadworks
in the surrounding areas.
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Another interesting case we detected was a temperature inversion that took place
in Trieste at the end of December 2021 that triggered higher temperatures in the Karstic
Plateau, relative to the urban area. This trapped the colder, humid, and polluted air masses
in the urban area. The temperature inversion created a very suggestive view for those living
uphill, but also a rather unhealthy situation for those living in the city centre (Figure 7).
COCAL was able to detect and map this phenomenon (Figure 7) with great precision,
distinguishing the clean air environment in the surroundings of the Karstic village of
Opicina (Figure 7 green area) from the polluted area of the city centre (Figure 7 red area). It
is very interesting to notice the sudden change in the characteristics of the distribution of
air quality following the road connecting the two areas. This sudden change very closely
resembles the situation shown in the photo taken from uphills (Figure 7).

3.3. Monitoring Air Quality in Relation to COVID-19 Lockdown

As the COCAL system was launched in February 2021, the system was not able to
monitor the changes in air quality related to the COVID-19 lockdowns that were decided by
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the Italian government during 2020 and that were more generalised than those happening
during 2021. Nevertheless, COCAL was able to cover the partial lockdown that occurred
between 15 March 2021 and 11 April 2021 [55]. COCAL continued to be operational in that
period since public transportation and environmental monitoring activities were exempted
from lockdown limitations.

Figure 8 (left) shows the air quality distribution in the designated area on 11 March
2021 (pre-lockdown situation). This map resembles the usual distribution of air quality in
the urban area during winter. Figure 8 (right) shows the situation on 17 March 2021, during
the COVID lockdown, and demonstrates that PM levels were drastically reduced.
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3.4. Comparison of Different Zones of the Designated Area

A qualitative analysis of the large amount of data we were able to collect since March
2021 highlighted that the designated area does not behave homogeneously in terms of
air quality. Different parts of the city tend to accumulate air pollution in different ways.
In order to understand how this actually occurs, we selected six equidimensional zones
in the city and its hinterland and compared the measurements available in each of them.
Figure 9 (upper) shows the positions of the considered zones. Although the density of
measurements is not the same in all zones, the large amount of data collected in each zone
guarantees that the results are statistically significant. The analysis focussed on the third
quartile of the distribution of PM measurements in each area. Higher third quartiles can be
interpreted as a tendency to perform worse in terms of air quality. This is due to the fact
that frequent high levels of PM will upwardly shift the distribution of PM values. As can
be easily seen in the violin plots (Figure 9, lower), the areas that show higher third quartiles
are those immediately outside the urban center (San Giacomo, Valmaura), while the city
center experiences lower PM concentrations.
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4. Discussion

The large amount of data collected by COCAL highlights interesting trends and
hotspots in the distribution of PM in the designated area. Unfortunately, a severe limitation
of the LCSs used is the fact that they cannot perform any type of chemical analysis. Con-
sequently, it is not possible to identify, with sufficient reliability, the sources of pollution.
As a result, it is very difficult to unequivocally associate an anomaly with a cause such
as urban traffic, domestic heating, or emissions from industries. However, results such
as those obtained during the COVID lockdown can provide significant clues on the topic
(Section 3.3).

Following [56], a daily estimate of approximately 420,000 trips in the urban area of
Trieste have been calculated. Under normal conditions, 47% of them are conducted by
car, 20% are conducted by public transportation, 13% are conducted by motorbike, and
20% are conducted on foot or by other means of transportation. Almost 60% of the overall
trips in the urban area of Trieste can, therefore, be associated with private vehicular traffic.
COVID-19 prevention rules discouraged people from driving, so it seems rather reasonable
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to associate the large improvement in air quality in the urban area during lockdown with
the reduction of private vehicular traffic. Similar results have been obtained in other areas
by several authors, such as [57–59], to mention just a few.

In order to further support this hypothesis and exclude a possible dependance from
weather conditions, we conducted a specific review of the data available from the M.F.B.
station in that period. This survey showed that the weather has always been stable, with
the exception of a limited episode of 4 h on 14 March 2021. During that event, moderate
winds from the north-east, with a maximum speed of 40 km/h and a maximum 5 mm of
rainfall, were recorded.

During the COVID-19 lockdown, the improvement in air quality resulted in a quasi-
homogeneous low level PM concentration distribution (Figure 8), whereas the distribution
of PM in non-lockdown conditions shows, instead, high values that are not geographically
homogeneous.

In Section 3.4, six different areas of the city that show different behavior were consid-
ered. In terms of air quality, the city center generally performs better than the urban belt
immediately outside it (San Giacomo, Valmaura). A possible explanation for this behavior
could be related to the fact that traffic limitations have effectively been implemented in
the city center [56]. As a consequence, car traffic tends to jam in peripheral areas while
awaiting to enter the city center itself. This is a reasonable explanation if we consider that
the industrial area of the city is located further south (Zaule, Muggia) of the urban belt and
that, in those peripheric areas, the distribution of PM measurements seems less problematic.
As mentioned above, it is not possible to perform chemical analysis using LCSs. The
hypothesis drawn so far cannot, therefore, be confirmed using LCS measurements alone,
and further detailed chemical studied are recommended.

5. Conclusions

We developed a mobile air quality monitoring system based on a participative crowd-
sourcing paradigm only. The system allows to acquire, transmit, process and map, both
geographically and over time, the distribution of air pollutants such as particulate matter.
The system was deployed on a dozen platforms, including buses from the local transporta-
tion authority and voluntary cars. The system has been fully operational since February
2021 and has been demonstrated to be extremely robust without almost any need for
maintenance.

Participatory systems must be based on low-cost sensors otherwise the expenditure of
such initiatives would quickly exceed any reasonable budget. We have carefully considered
all the drawbacks that this might introduce, understanding that since the accuracy of the
sensors is rather low, they cannot be used to produce reference measurements. However,
we verified that their precision is sufficient to identify both trends and hotspots.

In order to correct the limitations in accuracy, we developed an automatic method that
takes into account the difference between the measurements taken with low-cost sensors
and the official reference values taken by official environmental agencies.

The large quantity of data gathered so far constitutes an extremely important asset for
understanding the dynamics of the pollution in the designated area, allowing one not only
to identify sudden anomalies due to specific events, but also to identify different trends in
different areas of the city. We showed that, during the COVID-19 lockdowns, a significant
improvement in air quality can be correlated to the block of private car traffic, thereby also
demonstrating its detrimental role on air quality.

We analyzed the large amount of data gathered since the launch of COCAL and were
able to identify an urban belt where the air quality is worse than elsewhere in the city. This
anomaly can also be correlated to the private car traffic, although further chemical studies
are recommended to confirm this.

Our results demonstrate the impact of traffic on air quality in the designated area
and that the approach we used in COCAL can be very helpful in planning mobility and
transportation in collaboration with local municipalities.
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Participative data collection and the availability of real-time pollution maps should
make the whole city community reflect on how they can effectively help to improve the air
quality in the area that they live in. It would be easier, then, to advise on, or even reinforce,
the reduction of private car traffic, thereby increasing the more widespread use of public
transportation.
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