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Zipf’s law describes the empirical size distribution of the components of many systems in natural and
social sciences and humanities. We show, by solving a statistical model, that Zipf’s law co-occurs with the
maximization of the diversity of the component sizes. The law ruling the increase of such diversity with the
total dimension of the system is derived and its relation with Heaps’s law is discussed. As an example, we
show that our analytical results compare very well with linguistics and population datasets.
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Diversity is a central concept in ecology, economics,
information theory, and other natural and social sciences. It
can be quantified by diversity indices [1,2], such as
(species) richness, the Gini-Simpson index, or Boltzmann-
Shannon entropy, which characterize the system under
study from different angles. Loosely understanding the
term, high diversity may represent an advantage in terms of
resilience and performance. This is the case, for instance, in
ecology, where well differentiated ecosystems are often
(see, e.g., Ref. [3] for the debate on this topic) considered to
be more stable [4–6], and in economy as well: strong
countries have a well diversified production [7].
In most cases diversity is hindered by limiting factors.

For an ecosystem the amount of energy and chemical
components available does not allow an unbounded
increase of the population. Similarly, the number of
different items produced by an economy is limited by
its strength. The diversity drift is therefore a complex
optimization process.
Elaborating on that, in this Letter we take the afore-

mentioned restrictions into account and, among the pos-
sible measures of diversity [1] we consider the richness
index D, which turns out to be particularly suited for a
quantitative description of such optimization tendency in
many complex systems. Richness is a quantity that counts
the number of different types which are present in a
collection of items. For instance, the set of integers

f3; 7; 1; 9; 0; 1g is richer than f3; 2; 3; 7; 7; 2g, because
there are five different figures in the former and only three
in the latter. Every diversity measure can be rephrased in
terms of Rényi [8] (or, equivalently, Tsallis [9]) entropies
[see Ref. [1] and Supplemental Material (SM) [10] ].
Notice, however, that the index D alone is insensitive to
the abundance of each type but only to their presence or
absence.
We consider situations where types can be identified by

quantitative labels s, as in the example above. D is the
richness of the collection of entities fs1;…; sNg, with
arbitrary N, but subjected to the additive constraint
S ¼ P

N
n¼1 sn. Here, sn represents the portion of the total

resource S assigned to the nth entity of the ensemble, i.e.,
its size. Entities can be cities [12] of a country with total
population S, distinct words [13] occurring with absolute
frequencies fsng in a book of size S or genes [14] expressed
with abundances fsng where S is the total number of
proteins synthesized in a cell.
These systems are instances where the Zipf’s law [15,16]

is observed to hold. Other well known examples include
[17] GDP of nations [18], firm sizes [19], species in taxa
[20], and fragmentation processes [21]. If ranked according
to their size s, components obey Zipf’s law when

sðrÞ ∝ r−a; ð1Þ

where r is the rank, with a ≃ 1. A representation in
terms of the distribution of sizes [16,22] pðsÞ ∝ s−τ, with
τ ¼ 1þ a−1, is better suited to our purposes. To explain
Zipfian behavior many generative mechanisms have been
proposed [23–29] and it has also been framed in a broader
statistical perspective [30–32]. For instance, it has been
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shown to be associated to maximally informative samples
in modeling complex systems [31,33].
In this Letter, we show that the maximization of the

diversity index D and the occurrence of Zipf’s law in the
distribution of the component sizes fsng are naturally
related. This is achieved by deriving, in a statistical model,
a diversity law that can be used to estimate the index D of
distributions of empirical data. We put our results to the test
showing remarkable agreement with data for quantitative
linguistics, taken from the Project Gutenberg English texts
database [34], and for urbanistics from the GeoNames
database [35]. Finally, within our approach we also recover
in a simple way the expression of Heaps’s law [36,37] and
discuss its relation with the diversity law. The fact that
specifically D, among the possible diversity measures, is
extremized, indicates the prominent role played by this
quantity in the many and diverse natural phenomena
described by the Zipf’s law and represents a different
and perhaps profitable rationalization for its occurrence.
The model.—Consider sets of independent and identi-

cally distributed integer random variables fsng, sampled
from a generic probability distribution pðsÞ. We call sn the
size of the nth component (or entity). pðsÞ will be denoted
as the bare distribution, since the effective (dressed)
distribution of the sn is shaped by the presence of a global
constraint

P
N
n¼1 sn ¼ S, where S is the total dimension of

the system. N is the fluctuating number of entities that,
according to the particular extraction of the fsng, is needed
to fulfill the constraint. The probability of a particular
configuration C≡ ½fs1;…sNg;N� is given by

pSðfs1;…; sNg;NÞ ¼ 1

ZS

YN
n¼1

pðsnÞδPN
n¼1

sn;S
; ð2Þ

where the constraint is enforced by the Kronecker delta.
The quantities ZS ¼

P∞
N¼1 ZSðNÞ and

ZSðNÞ≡XS
s1¼1

XS
s2¼1

� � �
XS
sN¼1

YN
n¼1

pðsnÞδPN
n¼1

sn;S
ð3Þ

play the role of partition functions in an ensemble where N
is fluctuating or fixed, respectively. One obtains the
probability of having a number N of entities as
pSðNÞ ¼ ZSðNÞ=ZS. The dressed probability of observing
a size s can be written using Eq. (3) as

pSðsÞ ¼
pðsÞP∞

N¼1NZSðNÞ
X∞
N¼1

NZS−sðN − 1Þ; ð4Þ

where the factor N appears because we do not distinguish
among components.
If ts is the number of times the value s ∈ ½1; S� is found in

a given configuration C, the diversity index D (hereafter
also referred to as simply diversity) is defined as

D ¼
XS
s¼1

ð1 − δts;0Þ; ð5Þ

namely the number of different values assumed by the
entities. The probability pSðDÞ of observing a certain value
of D is formally given in the Supplemental Material [10].
We are interested in highly diverse configurations,

therefore we consider power law bare probability distribu-
tions, which grant access to a wide range of sizes,

pðsÞ ¼ s−τ

Λðτ; SÞ ; for 1 ≤ s ≤ S; ð6Þ

and pðsÞ ¼ 0 otherwise. The normalization Λðτ; SÞ ¼
ζðτÞ − ζðτ; Sþ 1Þ is a generalized harmonic number and
can be written in terms of the Riemann and Hurwitz zeta
functions, ζðxÞ and ζðx; yÞ respectively.
Our goal is to compute the average diversity hDiS and

the value of τ which maximizes it (see Fig. 1). Given the
complicated expression of pSðDÞ, we directly determine
hDiS as follows. We split the range of sizes into s ≤ s� and
s > s� [38], where s� is defined by hNiS pSðs�Þ ¼ 1; these
two sectors contribute to hDiS as

hDiS ≃ s� þ hNiS
XS
s¼s�

pSðsÞ: ð7Þ

Indeed, given an average number of entities hNiS, there is at
least one of them for each size s ≤ s�, contributing to the
first term on the right-hand side of Eq. (7). The second term
is the average number of entities with s > s�. Since these
are represented at most once this also corresponds to their
contribution to hDiS.

FIG. 1. Pictorial representation of the problem. Power laws,
pðsÞ ∼ s−τ, are sketched with an increasing exponent τ (from
bottom to top) alongside with relative typical realizations fsng.
Entities of the same size are depicted as blocks of the same color
and in all the cases they add up to S, the total length of the bar. For
large values of τ, most of the entities have small and similar sizes,
resulting in a poor diversity D. In the other limit, small τ, large
sizes do get more probable but the total number of entities
required to fill S is smaller. Consequently, diversity is again small.
The diversity is expected to be maximal for an intermediate value
of τ.
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With Eq. (7), the evaluation of hDiS only depends on the
knowledge of hNiS and pSðsÞ. These quantities can be
computed numerically with an exact recursive method, as
discussed in the Supplemental Material [10]. For an
analytical treatment of the problem it is possible to
approximate the dressed probability distribution with the
bare one, i.e., pSðsÞ ≃ pðsÞ (see the Supplemental
Material [10]). This simplification leads to an asymptotic
expression for hDiS which is accurate for large S. The
average component size reads hsiS ¼

P
S
s¼1 spSðsÞ≃P

S
s¼1 spðsÞ ¼ Λðτ − 1; SÞ=Λðτ; SÞ, from which hNiS can

be obtained as hNiS ≃ S=hsiS. Using Λðx; SÞ ≃ ζðxÞ þ
S1−x=ð1 − xÞ for x ≠ 0, 1, Λð1; SÞ ≃ ln S, and
Λð0; SÞ ≃ S, valid for large S, we obtain

hNiS ≃

8>>>>>><
>>>>>>:

ð2 − τÞ=ð1 − τÞ; for τ < 1

ln S; for τ ¼ 1

ζðτÞð2 − τÞSτ−1; for 1 < τ < 2

ζð2ÞS= ln S; for τ ¼ 2

ζðτÞS=ζðτ − 1Þ; for τ > 2;

ð8Þ

which is in excellent agreement with the exact determi-
nation, see the Supplemental Material [10]. From the
definition hNiSpSðs�Þ ¼ 1, we obtain s�ðτ; SÞ ≃ ½S=Λðτ −
1; SÞ�1=τ and, substituting in Eq. (7), one arrives at
the sought-after result for the average diversity:
hDiS ≃ s� þ ðs�Þτ½ζðτ; s�Þ − ζðτ; Sþ 1Þ�. Approximating
the Riemann zeta function by ζðxÞ ≃ ðx − 1Þ−1 þ γ, where
γ ≃ 0.577 is the Euler constant, we can write

s�ðτ; SÞ ≃ S1=τ½γ þ ðS2−τ − 1Þ=ð2 − τÞ�−1=τ; ð9Þ

hDiS ≃
τs� − ðs�ÞτS1−τ

τ − 1
; ð10Þ

where the appropriate limits for τ ¼ 1 and 2 are taken.
This determination of hDiS is portrayed in Fig. 2 and

compared with the outcome of numerical simulations
finding a very good agreement. For large S, the leading
contribution to Eq. (10) is

hDiS ≃

8>>>>>>>>><
>>>>>>>>>:

ð2 − τÞ=ð1 − τÞ; for τ < 1

ln S; for τ ¼ 1

τð2−τÞ1=τ
τ−1 S1−1=τ; for 1 < τ < 2

2ðS= ln SÞ1=2; for τ ¼ 2

τ
τ−1

�
S

γþðτ−2Þ−1

�
1=τ

; for τ > 2:

ð11Þ

One has hDiS ∼ SαðτÞ with αðτÞ ¼ 0 for τ < 1, αðτÞ ¼
1 − 1=τ for 1 < τ < 2, and αðτÞ ¼ 1=τ for τ > 2, see inset
of Fig 2. In conclusion, for large S, hDiS presents a
pronounced peak at τ ¼ 2. This behavior is due to the

competition between the abundance of entities hNiS,
favored by large τ, and the diversity of their sizes which
instead is enhanced by small τ, as shown in Fig. 1. We
remark that the upper bound obtained by considering the
deterministic partition S ≃ 1þ 2þ � � � þD with D ∼ S1=2

overpowers the τ ¼ 2 case only by a logarithmic factor.
Let us mention that, although we explicitly solved the

model for power law distributions, which yield maximum
diversity, our calculations can be straightforwardly gener-
alized to different pðsÞ. For instance, in the case of
algebraic distributions with a lower cutoff, a case often
representative of real situations [39], one recovers similar
results provided that the cutoff is independent of S (see the
Supplemental Material [10]).
We also stress that, as shown in the Supplemental

Material [10], among the possible measures of diversity
usually considered in the literature, D is the only one to be
maximized in connection with Zipf’s law.
We notice also that the model considered here is related

to the random allocation model [40] where the resource S is
distributed among an assigned number N of components.
The diversity properties of such a model, however, are very
different and, in particular, the special role played by τ ¼ 2
is missing. This is briefly discussed in the Supplemental
Material [10].
Diversity, Zipf’s, and Heaps’s laws.—Since the diversity

is determined once an empirical distribution of sizes is
given, we can use hDiS given in Eq. (11) to estimate the
diversity index D of power law distributed empirical data,
regardless of the mechanism whereby they are produced. If
this assumption holds, on the basis of our analytical
arguments, one can conclude that if a system displays

FIG. 2. Average diversity hDiS, obtained through numerical
simulations for various sizes S (see key), dashed lines are guides
to the eye. Entities are extracted from the bare distribution Eq. (6)
and the statistics is restricted over configurations respecting the
global constraint. Results are averaged over 104 − 106 configu-
rations. Solid lines (shown only for the extreme sizes), are the
analytical solutions given by Eq. (10). Inset: The exponent αðτÞ,
defined below Eq. (11), as a function of τ. Solid line is the
analytical result, dots are fits from the simulation data.
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Zipf’s law (τ ≃ 2) it is at the edge of maximal diversity and
vice versa.
As a first example we consider quantitative linguistics,

the field in which Zipf’s law has been originally observed
in almost every human language [13,41–43]. The regime of
validity of the law in this context [44], its deviations [45],
and the underlying mechanism(s) are still a matter of
dispute. Nonetheless, large scale studies have been per-
formed in order to validate that. For example, Moreno-
Sánchez et al. [43] considered a very large set of English
books (more than 30 000) from the Project Gutenberg
database. They checked how well some simple, one-
parameter forms of the Zipf’s law describe these data on
the whole interval of frequencies, finding very good
agreement with a distribution of exponents centered
on τ ≃ 2.
We use the filtered data of Ref. [43] and, for each book,

measure the diversity indexD. The total number of words a
book contains is its total size S, the number of distinct
words is the number of entities, N, and the size s of each
entity is its absolute frequency, i.e., how many times that
word appears. The diversity D is therefore the number of
different frequencies a given text displays. The result of this
analysis is shown in Fig. 3 along with Eq. (11) for τ ¼ 2.
Notice that there are no free parameters in the plot. The
agreement between our theoretical prediction and the

experimental points is consistent with the results reported
in Ref. [43] showing that a great deal of the books have τ
close to 2.
As a second example, we consider how the total

population S of a country is distributed among its cities.
We use data for European countries from the GeoNames
database [35], for which Simini and James [46] showed that
the size s of cities closely follows a Zipf’s distribution
(τ ≃ 2.02). The diversity indexD is shown in Fig. 3 (bottom
panel). Since cities cannot be smaller than a certain lower
cutoff sL, the analytical prediction to compare with is
Eq. (18) of the Supplemental Material [10] (solid line).
Despite the noisy character of the data, there is a very good
agreement between the data and our theory.
The content of Eq. (8) is Heaps’s law, which gives an

estimate of the number of components of a system of total
size S given that the empirical size distribution follows a
power law with exponent τ. Our expression of the law for
τ > 1 is in accordance with Ref. [37] and complements the
result with the cases with τ ≤ 1 and with the appropriate
prefactors. Heaps’s law is expected to hold for systems
which are robust in the statistics of their component [pSðsÞ
in our notation] at varying S [37,39]. This is captured in our
approach, where Eq. (8) is only arrived at using distribu-
tions which have the same form for any S [the same applies
to Eq. (11)].
In our approach, Heaps’s law (8) and the diversity law

(11) imply each other, encoding dependencies on the
system size on equal footings. However, notably, the latter
naturally selects the exponent τ ¼ 2 as a special one.
Moreover, our analysis of the Gutenberg dataset shows
that the diversity law is obeyed up to the largest sizes
considered (S ≃ 107), whereas it is known [47] that strong
deviations from Heaps’s law are caused by the finiteness of
the vocabulary. Therefore, at least in the context of
language, the diversity law appears more robust and this
suggests that its use could be more suited to interpret the
size dependence of empirical data.
Discussion.—The partition of a finite resource S among

constituents informs numerous systems in diverse fields of
science and humanities. In this Letter, by solving a
paradigmatic statistical model, we have shown that a
maximally diverse partition is accompanied by Zipf’s
law. Such co-occurrence is a general property of the
empirical distribution, holding irrespectively of the specific
mechanisms at work in generating Zipfian behavior in
given systems.
Diversity and information are fundamental concepts for

the description of complex statistical systems whose
formalization led to the definition of a coherent set of
quantitative measures, Boltzmann-Shannon entropy above
all. Our results show that in the case of system obeying
Zipf’s law an important role is played by one of
such measures, the index D. When framed in terms of
extremization of appropriate cost functions, problems are

FIG. 3. Top panel: diversity index D evaluated from the data of
Ref. [43]. Each green point is one of the more than 30 000
English books in the Project Gutenberg database (accessed July
2014), while the black squares are a running average over 20
points. The solid line is the result hDiS ¼ 2ðS= ln SÞ1=2, from
Eq. (11) for τ ¼ 2, which corresponds to maximal diversity.
Bottom panel: diversity index using data from the GeoNames
database [35] for cities. Each green point is a European country
and the black squares are the corresponding running average. The
solid line is Eq. (18) of the Supplemental Material [10], where the
presence of a lower cutoff sL is taken into account. sL is estimated
from the average of the smallest city in each country (sL ≃ 1313),
see Supplemental Material [10]. The dashed line is the behavior
hDiS ¼ 2ðS= ln SÞ1=2, which is approached only asymptotically.
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endowed with a complementary description and can be
approached with new strategies. Our study suggests that, in
some instances where Zipf’s law is empirically observed,
promoting diversity to the role of a driving force could
provide further theoretical insights towards a deeper and
more general comprehension.
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