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Abstract
Plankton are a pivotal component of the diversity and functioning of coastal marine ecosystems. A long 
time-series of observations is the best tool to trace their patterns and variability over multiple scales, ulti-
mately providing a sound foundation for assessing, modelling and predicting the effects of anthropogenic 
and natural environmental changes on pelagic communities. At the same time, a long time-series consti-
tutes a formidable asset for different kinds of research on specific questions that emerge from the observa-
tions, whereby the results of these complementary studies provide precious interpretative tools that aug-
ment the informative value of the data collected. In this paper, we review more than 140 studies that have 
been developed around a Mediterranean plankton time series gathered in the Gulf of Naples at the station 
LTER-MC since 1984. These studies have addressed different topics concerning marine plankton, which 
have included: i) seasonal patterns and trends; ii) taxonomic diversity, with a focus on key or harmful algal 
species and the discovery of many new taxa; iii) molecular diversity of selected species, groups of species or 
the whole planktonic community; iv) life cycles of several phyto- and zooplankton species; and v) interac-
tions among species through trophic relationships, parasites and viruses. Overall, the products of this re-
search demonstrate the great value of time series besides the record of fluctuations and trends, and highlight 
their primary role in the development of the scientific knowledge of plankton much beyond the local scale.
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…time-series programs act
as intellectual flywheels that create and

sustain ever larger, complementary
programs where the scientific outcome
of the integrated effort is much larger

than the sum of its parts

David Karl (2010)

Introduction

Long-term ecological research is recognized to contribute prominently to scientific 
advances as well as to inform environmental policy, which makes investments in 
continuous observations highly cost-effective (Edwards et al. 2010, Hughes et al. 
2017). Yet, long-term studies have often been derogatorily tagged as ‘routine moni-
toring’, only aimed at recording natural events, whereby the sampling scheme that 
repeats over time with the same sustainable modality would hardly deem to de-
serve consideration alongside scholarly scientific activities. In terms of publications, 
observational activities are also considered scarcely rewarding, or likely to produce 
only descriptive papers. As a matter of fact, long-term time series are less than what 
would be needed and their spatial coverage is extremely limited (Koslow and Cou-
ture 2013). In the marine environment, few programs among the twentieth-century 
time-series have lasted more than a few decades (Duarte et al. 1992) probably be-
cause of their higher inherent costs and lower accessibility compared to the terrestrial 
environment. Especially in the case of plankton, the dominance of microbial life, 
which is characterized by small temporal and spatial scales in life cycles and distribu-
tions (Ribera d’Alcalà 2019) imposes a sampling frequency that is hardly compatible 
with the logistic and economic constraints of marine research. In fact, long-term 
ecological studies are less numerous in the world seas than in freshwater and ter-
restrial ecosystems (e.g., Mirtl et al. 2018), and they are mostly coastal and only in a 
few cases include the study of plankton.

Nonetheless, remarkable examples exist of the crucial role of time series as a base-
line for the definition of the marine ecosystem status change and the understanding of 
the impact of climatic and anthropic forces on the structure and function of oceanic 
ecosystems (McGowan 1990, Karl 2010, Koslow and Couture 2013, Cloern et al. 
2016). Time-series analysis has highlighted long-term changes and regime shifts that 
are at the basis of the fluctuations for plankton and fish populations in relation to cli-
mate oscillations in the north Atlantic (Beaugrand 2004, Edwards et al. 2010, Harris 
2010) and in the Pacific (Venrick et al. 1987, Karl et al. 2001), which has been made 
possible by such regular and persistent surveys as the Continuous Plankton Recorder 
program (Reid et al. 2003), the long-term observations in San Francisco Bay (Cloern 
and Jassby 2012) and at the CALCOFI and station ALOHA programs in the North 
Pacific Ocean (Karl et al. 2001, Koslow et al. 2011).
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In the studies mentioned above, the data collected over many years have mainly 
been used to highlight interannual patterns, episodic events and long-term changes in 
the system. On the other hand, it is rarely taken into account that, while recording 
changes over time, a sustained sampling plan can help to gather fundamental informa-
tion on the biology of the species and illuminate the mechanisms of their succession 
and the relationships among the components of the system. In addition, the precious 
infrastructural asset of a time series provides a backbone for complementary studies 
that are stimulated by questions stemming from the results of continuous observations 
(Karl 2010, Zingone et al. 2010b).

This paper is an overview of a series of studies that have been produced in relation 
to plankton observations conducted at the Long Term Ecological Research site “Mare-
Chiara” (LTER-MC) in the Gulf of Naples (Mediterranean Sea) since its establishment 
in 1984. These studies include both ecological investigations aimed at tracing the time 
variability of the pelagic system and complementary research based on experiments or 
additional observations flanking the routine monitoring for shorter periods of time. 
The latter complementary studies were prompted by the idea that the interpretation of 
observational data must be grounded in a deep understanding of the diversity, biologi-
cal assets and ecological interactions of plankton populations, which is the key to the 
prediction of the response of natural populations to changing scenarios. Our aim is to 
highlight the fundamental contribution of time series to the development of plankton 
knowledge that can be of general interest much beyond the local scale.

The research site: general characteristics

The Gulf of Naples (GoN) extends between 40°50'N, 40°32'N, 13°52'E, 14°28'E in 
the Mid Tyrrhenian Sea, with an area of ca 870 km2 and an average depth of 170 m 
(Fig. 1). A population of about 4 million people lives in the coastal area, which has 
been inhabited since pre-Roman times. Large-scale industrial activity is today reduced, 
while small and medium enterprise activities are significant and growing. For several 
years, urban and industrial discharges have largely been submitted to different types of 
treatments. However, some highly impacted areas are still present, sometimes located 
close to relatively pristine localities that are part of Marine Protected Areas (http://
www.parks.it/indice/RM/map.php?reg=15) (Tornero and Ribera d'Alcalà 2014). Be-
sides scattered municipal effluents, modest freshwater inputs are provided by the Sarno 
River from the southern coast and the Volturno River from the adjacent Gulf of Gaeta 
to the North, which results in high salinity values (> 38) often also close to shore.

First studies on the plankton of the GoN predate the foundation of the Stazione 
Zoologica Anton Dohrn of Naples (SZN) in 1872 (e.g., Costa 1858). In the following 
decades studies on plankton biodiversity were occasionally conducted with different ob-
jectives, and included taxonomic studies on copepods (Giesbrecht 1892) and ecological 
studies focused on the phenology of microplankton species (Issel 1934, Indelli 1944, 
De Angelis 1958) and on zooplankton distribution (Hure and Scotto di Carlo 1968). 

http://www.parks.it/indice/RM/map.php?reg=15
http://www.parks.it/indice/RM/map.php?reg=15
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Figure 1. Map of the Gulf of Naples with the location of the station LTER-MC.

Yet regular ecological researches into the planktonic system of the GoN did not start 
until the 1970’s (Carrada et al. 1981, 1982). Since 1984 these researches have mainly 
been based on data collected fortnightly (until 1991) or weekly (1995 to date) at the site 
MareChiara (Scotto Di Carlo et al. 1985, Ribera d'Alcalà et al. 2004), which in 2006 
became part of the Italian, European and international LTER networks as LTER-Mare-
Chiara (LTER-MC). Research at this single point has been complemented over the years 
by several sampling campaigns and studies expanding over the whole area of the GoN 
and at times in the adjacent Gulfs (Marino et al. 1984, Ribera d'Alcalà et al. 1989, Zin-
gone et al. 1990, 1995a, Ragosta et al. 1995, Iermano et al. 2012, Cianelli et al. 2017).

The station LTER-MC is located 2 nautical miles off the coast of the city of Naples 
in an area that can be alternatively influenced by the eutrophic coastal zone and the 
oligotrophic waters of the mid Tyrrhenian Sea (Fig. 1). Based on the data from a series 
of weekly sampling cruises in the inner Bay of Naples in summer 1983 (Zingone et al. 
1990), the site was selected so as to avoid the conditions more directly reflecting the 
most intensive nutrient inputs from the southeastern coast of the inner Bay, and to cap-
ture the variability deriving from the exchange with the offshore waters. In fact, esti-
mates of primary production conducted over the first part of the time series range from 
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260 g C m−2 yr−1 in the period 1984–1991 to 151 g C m−2 yr−1 in the years 1997–2000 
(Pugnetti et al. 2006), which ranks the study area as oligo-mesotrophic (Nixon 1995). 
Research on the spatial representativeness of station LTER-MC has shown that the site 
is more affected by coastal than offshore waters and can occasionally be influenced by 
the nearby Gulf of Gaeta (Carrada et al. 1981, Iermano et al. 2012), whereas it does 
not seem significantly affected by the Sarno River (Cianelli et al. 2017). On the other 
hand, complementary research conducted on a wider area (e.g. Marino et al. 1984, 
Ragosta et al. 1995, Zingone et al. 1995a) indicates that environmental conditions 
in the inner Gulf of Naples are quite distinct from the nearby mid-Tyrrhenian coasts.

The dataset collected at the LTER-MC site since 1984 includes physical (tempera-
ture and salinity), chemical (O2, NO2, NO3, NH4, PO4, SiO4) and biological (chlo-
rophyll a, phytoplankton and mesozooplankton) data, all concerning different depths 
of the water column except phytoplankton which are analyzed in surface waters and 
mesozooplankton which are collected in the 0–50 m depth layer (Table 1). A num-
ber of other variables have been added over the years, including pigment spectrum 
by High Performance Liquid Chromatography (HPLC) since 1996 and, since 2007, 
particulate Organic Carbon (POC), Total Nitrogen and Phosphorous (TN e TP), Dis-
solved Organic Carbon (DOC), bacteria and picoplankton by flow-cytometry and 
mesozooplankton carbon and nitrogen content. Data over relatively long periods were 
also collected for microzooplankton (March 1984–March 1985, September 1996–De-
cember 2009), 14C primary production (1984–1989 and 2007) and egg production 
and viability in the copepod Centropages typicus Krøyer, 1849 (1995–2015).

Temporal variability at station LTER-MC

Tracing the ecosystem variability over decadal scales is the distinctive essence of long-
term research and the only approach that allows for discerning regular patterns, trends 
and shifts occurring in the environment. In long-term studies, one of the primary 
questions is whether significant changes occur in the overall system or in some of its 
components, which at LTER-MC has so far been addressed over the years 1984–2006. 
In that period, a pronounced interannual variability was evident in all environmental 
variables, with only a few significant trends, e.g., increase in summer temperature and 
decrease in chlorophyll a concentrations (Mazzocchi et al. 2011, 2012). Chlorophyll 

Table 1. Environmental and biological variables at station LTER-MC (1984–2014). All values refer to 
surface waters, except zooplankton abundance which refers to 0–50 m layer of the water column.

Temperature (°C) Salinity Chlorophyll a 
(µg L-1)

Phytoplankton 
(Cells mL-1)

Zooplankton 
(Ind. m-3)

Minimum 13.2 36.2 0.1 7.5 × 10 1.1 × 102

Maximum 28.9 38.3 26.8 2.2 × 105 2.3 × 104

Median 19.6 37.7 1.1 5.7 × 103 1.3 × 103
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markedly declined until 2002 (Zingone et al. 2010a), followed by a weak positive trend 
from 2003 to 2006 (Mazzocchi et al. 2012). Since 1995, phytoplankton increased in 
cell numbers but decreased in average cell size (Ribera d'Alcalà et al. 2004) mainly 
because of a decrease, across the years, in the proportion of larger vs. smaller diatom 
species (Fig. 2). The decrease for average cell size was evident until the early 2000s but 
a trend reversal has been observed in recent years (Sarno and Zingone unpubl. data in 
Morabito et al. 2018).

Copepods are the most numerous among the zooplankton groups and shape the 
patterns of the entire community. They showed higher abundances in the 1980s than 
in the two successive decades; this trend reversed in the years 2004–2006, mainly due 
to the increase of the calanoids Paracalanus parvus (Claus, 1863), Acartia clausi Gies-
brecht, 1889 and Centropages typicus (Mazzocchi et al. 2012). The latter two species 
showed changes in their phenology with a significant anticipation of their population 
cycle in relation to positive temperature anomalies, a typical “earlier when warmer” re-
sponse observed at different latitudes (Mackas et al. 2012). The decrease in chlorophyll 
concentrations suggests that station LTER-MC has acquired less coastal characteristics 
over the years, a signal that is also seen in the disappearance of a few copepod species 
typical of confined areas and increased abundance of species that thrive in offshore 
waters (Mazzocchi et al. 2012).

Over a longer time scale, the comparison with previous investigations in the GoN 
of the early 1930s showed essential changes in the tintinnid (ciliates) community in 
terms of dominant species (Modigh and Castaldo 2002) and in the occurrence of 
dinoflagellates species of the genus Tripos (as Ceratium) as a response to local warming 
(Tunin-Ley et al. 2009).

The interannual variability at station LTER-MC is remarkable, but it is the seasonal 
forcing that plays the main role in shaping the local pelagic system by deeply affecting 
the environmental features (Ribera d'Alcalà et al. 2004) and the plankton assemblages, 
from phytoplankton (Zingone et al. 1990, 1995a, 2003, 2010b) to microzooplankton 
(Modigh 2001, Modigh and Castaldo 2002) and mesozooplankton (Mazzocchi and 
Ribera d’Alcalà 1995, Mazzocchi et al. 2011, 2012). The only exception seems to be 
represented by the quite constant abundance of picoplankton, which, however, was 
studied over a single annual cycle (Modigh et al. 1996). The depiction of the average 
annual cycle of plankton at the sampling site is supported by long-term records which 
highlight the recurrence of regular patterns during most of the time series (Fig. 3). The 
comparison of the average seasonal cycle of zooplankton (1984–2006) with that of 
other five Mediterranean time-series at stations encompassing a wide range of trophic 
status has revealed that local drivers are dominant over large-scale climate influence for 
these coastal stations (Berline et al. 2012).

In thoroughly mixed water column conditions, minimum annual concentrations 
of chlorophyll in December-January, with a dominance of nanoflagellate species, are 
generally followed by late winter increase in February-March, mainly driven by large 
colonial diatoms which include several Chaetoceros species, Pseudo-nitzschia delicatis-
sima (Cleve) Heiden and Thalassionema bacillaris (Heiden) Kolbe. These winter blooms 
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Figure 2. Trends in cell number and size of phytoplankton species at station LTER-MC. Redrawn from 
Ribera d'Alcalà et al. (2004). The marked decrease in cell size mainly reflected the decrease of larger dia-
tom species and the increase of small-sized ones. ESD: Equivalent Spherical Diameter.

Figure 3. A schematic, averaged seasonal cycle of temperature, chlorophyll a and mesozooplankton 
abundance at station LTER-MC as recorded in the period 1984–2014.

are allowed by the non-limiting light amount especially under stable meteorological 
conditions and are reinforced by freshwater inputs contrasting intense vertical mixing 
(Zingone et al. 2010b). The reduced grazing due to the annual minima for micro- and 
mesozooplankton also contributes to the build-up of the winter biomass. In the winter 
ciliate assemblage, autotrophic species (Mesodinium) show the highest contribution, 
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while among metazoans copepods occur with numerous small-sized species (e.g., Clau-
socalanus, Calocalanus, Ctenocalanus vanus Giesbrecht, 1888, Oithona, oncaeids and 
corycaeids) and a few larger-sized (>1.5 mm) genera which thrive in deep offshore wa-
ters and are brought to the coastal site by the winter water mass circulation. The winter 
zooplankton are also characterized by a high percentage contribution of appendicular-
ians and meroplankton, the latter group likely reflecting the intense reproductive activ-
ity of benthic organisms, which indicates that phytoplankton blooms in this season fuel 
the zoobenthos rather than being exploited by the scarcely abundant holoplankton.

Spring is the period of growth of the whole plankton compartment in the GoN, 
with a conspicuous phytoplankton peak confined to surface waters generally occur-
ring in May, mainly caused by diatoms (e.g. Skeletonema pseudocostatum Medlin and 
Leptocylindrus aporus (F.W. French & Hargraves) Nanjappa & Zingone and phyto-
flagellates. Spring also sees the highest biomass of ciliates, which are dominated by the 
mixotrophic choreotrichs, and a copepod peak dominated by Acartia clausi in early 
spring followed by Centropages typicus in late spring-early summer.

In summer, with the annual peak of surface temperature (26 °C ± 1.5 °C in Au-
gust), phytoplankton are mainly characterized by intense blooms of small-sized, often 
non-colonial diatom species (e.g., Chaetoceros tenuissimus Meunier) and of phytoflag-
ellates, along with an increase of dinoflagellate biomass. Ciliates are represented by a 
variety of mixotrophic Strombidium, while mesozooplankton show the highest abun-
dance and the lowest diversity of the entire year, along with the dominance of cladocer-
ans (Penilia avirostris Dana, 1842) and copepods (mainly Paracalanus parvus).

The water column stratification disrupts in autumn, when depth-integrated tem-
perature and salinity reach their maximum annual values. Phytoplankton show a less 
regular third annual peak in October-early November which is driven by recurrently 
stable weather conditions (Saint Martin’s summer) that allow the exploitation of nu-
trients of terrestrial origin and mainly contributed by colonial diatoms (Leptocylin-
drus spp., Chaetoceros socialis Lauder, Thalassiosira rotula Meunier, etc.) (Zingone et al. 
1995a). Among ciliates, the autotrophic Mesodinium rubrum (Lohmann, 1908) and 
the mixotrophic Strombidium spp. and Tontonia spp. occur with high concentrations. 
The copepods Temora stylifera (Dana, 1849), Clausocalanus furcatus (Brady, 1883) and 
Oithona plumifera Baird, 1843, together with chaetognaths, appendicularians and do-
liolids, account for most mesozooplankton abundance in this period of the year.

Overall, in spite of the high interannual variability observed in environmental vari-
ables, the different phases of the annual cycle are remarkably regular for the whole 
community structure and for the most common species of all planktonic compartments 
(Mazzocchi and Ribera d’Alcalà 1995, Modigh 2001, Modigh and Castaldo 2002, Rib-
era d'Alcalà et al. 2004, Mazzocchi et al. 2011). This feature highlights the resilience 
of coastal communities, which may favor their persistence over time (Mazzocchi et al. 
2012, Cianelli et al. 2017). Recurrent species-specific seasonal patterns are observed not 
only in species of the copepod genera Clausocalanus and Oithona (Mazzocchi and Ribera 
d’Alcalà 1995, Castellani et al. 2015), but also in several phytoplankton taxa, such as the 
dinoflagellate Tripos (as Ceratium, Tunin-Ley et al., 2009), the diatom Pseudo-nitzschia 



Time series and beyond: multifaceted plankton research at a marine... 281

(Ruggiero et al. 2015), cryptomonads (Cerino and Zingone 2006) and numerous other 
species (Zingone and Sarno 2001, Ribera d'Alcalà et al. 2004), which suggests that the 
seasonal succession is mainly regulated by biological factors, such as life-cycle processes, 
species-specific physiological performances and inter-specific interactions.

Plankton diversity at LTER-MC

LTER-MC is one of the few sites where marine plankton diversity is regularly moni-
tored at the species level, with routine sample observations complemented by detailed 
taxonomic studies based on microscopy and molecular analyses. This peculiar approach 
stems from the conviction that a sound taxonomic knowledge and a clear definition of 
the ecological units of interest (i.e., species identification) are fundamental to the study 
of seasonal and long-term variability of plankton communities, to assess the conditions 
in which phyto- and zooplanktonic species occur and succeed, and, ultimately, under-
stand the pelagic ecosystem functioning. These principles also explain the attention 
paid to quality control procedures of both diversity and chemical physical data (Zin-
gone et al. 2015, Sabia et al. 2019). Indeed, the relevance of precise identification is 
fully supported by the results so far obtained on the taxonomic and molecular diversity 
of the GoN plankton, as detailed in the following.

Studies on plankton diversity in the GoN boast an ancient tradition dating back to 
the beginning of the XIX century (Delle Chiaje 1823, Costa 1858) and have intensi-
fied following the SZN foundation (Daday 1888, Giesbrecht 1892, Schröder 1900). 
Much higher attention has been paid to taxonomy of the GoN plankton since the start 
of the LTER-MC project, which has led to the clear demonstration of the high diver-
sity of these assemblages, with more than 750 microalgal and 212 mesozooplankton 
taxa recorded over the years. These numbers are certainly underestimated, particularly 
for protists, because many groups are still in need of detailed taxonomic investigation, 
but also for planktonic metazoans (Fig. 4), which also need deep investigation at the 
molecular level (Di Capua et al. 2017) and are recently revealing a high level of cryptic 
diversity (Hirai et al. 2017, Kasapidis et al. 2018). A current view is that hotspots of 
diversity correspond to hotspots of expert taxonomists, a joke that points to the lack of 
objective criteria for the comparison of plankton diversity among different sites. None-
theless, it is tempting to hypothesize that the GoN presents suitable characteristics to 
host a high biodiversity for plankton organisms. In fact, the Mediterranean Sea confers 
the area subtropical characteristics despite its temperate latitude, while the fertility of 
coastal waters may act as an incubator of diversity for a high number of species, includ-
ing those from offshore waters that are frequently driven into the Gulf. The interplay 
of hydrography, climate and trophic conditions likely creates optimal conditions for 
a high number of species to coexist in the area, a hypothesis that comparative studies 
with objective molecular methods will allow to test over coming years.

The taxonomic insights on the LTER-MC plankton have concerned particularly 
microalgae, which remain the least known plankton compartment – the smaller the 



Adriana Zingone et al.  /  Nature Conservation 34: 273–310 (2019)282

Figure 4. A mixed zooplankton sample from station LTER-MC with indicated some common taxa. 
Copepods: 1 Calanidae 2 Temora stylifera 3 Calocalanus 4 Clausocalanus 5 Oncaeidae 6 gastropod larva 
7 doliolid 8 fish egg 9 decapod larva.

organism, the larger the taxonomic deficit. Cultivation of microalgal strains obtained 
from natural samples under controlled laboratory conditions, introduced at SZN in 
the 1980’s, has been a powerful tool for the characterization of poorly known species. 
Flagellates hardly identified in fixed material were investigated at LTER-MC over their 
seasonal cycle using the Serial Dilution Culturing method (Throndsen 1978, Cerino 
and Zingone 2006), which eventually turned out to be a valuable source of material for 
deeper taxonomical and ecophysiological investigations. In addition, electron microsco-
py frequently coupled with cultivation allowed taxonomic insights of interest much be-
yond the GoN, like the rediscovery of Mediterranean flagellate species never found since 
their early description (Throndsen and Zingone 1988, 1994, Zingone et al. 1995b), and 
the description of calcareous resting stages of dinoflagellates and their assemblages in 
sediments from the GoN (Montresor et al. 1993, 1994, D’Onofrio et al. 1999).

Over the years, the regular observations of plankton samples from LTER-MC and 
the development of taxonomic expertise at SZN have allowed for spotting organisms 
not readily classifiable, paving the way for the re-description of ill-defined taxa and the 
discovery and formal description of more than 20 microalgal species new to science. 
These latter studies, often integrating the resting stage features as a further taxonomic 
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Table 2. Phytoplankton species originally described with different methods from LTER-MC and sur-
rounding waters. C: cultivation, M: Light and Electron Microscopy, MB: Molecular Biology, LC: Life 
Cycle studies, RS: Resting Stage description.

Species Methods References
Diatoms
Bacteriastrum parallelum Sarno, Zingone & Marino C, M Sarno et al. 1997
Chaetoceros throndsenii (Marino, Montresor & Zingone) 
Marino, Montresor & Zingone

C, M, RS Marino et al. 1987, Marino et al. 1991

Leptocylindrus aporus (F.W. French & Hargraves) 
Nanjappa & Zingone

C, M, MB French and Hargraves 1986, Nanjappa 
et al. 2013

Leptocylindrus convexus Nanjappa & Zingone C, M, MB, RS Nanjappa et al. 2013
Leptocylindrus hargravesii Nanjappa & Zingone C, M, MB, RS Nanjappa et al. 2013
Pseudo-nitzschia mannii Amato & Montresor C, M, MB, LC Amato and Montresor 2008
Skeletonema dohrnii Sarno & Kooistra C, M, MB Sarno et al. 2005
Tenuicylindrus belgicus* (Meunier) Nanjappa & Zingone C, M, MB Meunier 1915, Nanjappa et al. 2013
Dinoflagellates
Alexandrium mediterraneum U. John C, M, MB John et al. 2014
Alexandrium tamutum Montresor, Beran & U. John C, M, MB Montresor et al. 2004
Azadinium dexteroporum Percopo & Zingone C, M, MB Percopo et al. 2013
Biecheleria cincta (Siano, Montresor & Zingone) Siano C, M, MB Siano et al. 2009, Balzano et al. 2012
Prorocentrum nux Puigserver & Zingone C, M Puigserver and Zingone 2002
Protoperidinium parthenopes Zingone & Montresor M Zingone and Montresor 1988
Protoperidinium vorax Siano & Montresor C, M Siano and Montresor 2005
Scrippsiella precaria Montresor & Zingone C, M, RS Montresor and Zingone 1988
Scrippsiella ramonii Montresor C, M, RS Montresor 1995
Prasinophytes
Crustomastix stigmatica Zingone C, M, MB Zingone et al. 2002
Dolichomastix tenuilepis Throndsen & Zingone C, M, MB Throndsen and Zingone 1997
Prymnesiophytes
Phaeocystis cordata Zingone & Chrétiennot-Dinet C, M, MB Zingone et al. 1999a
Phaeocystis jahnii Zingone C, M, MB Zingone et al. 1999a

*new genus 

character, were initially based on morphology and ultrastructure (Table 2 and Fig. 5). 
Subsequently, the introduction of molecular methods has provided additional infor-
mation that has robustly supported the establishment of new species and their correct 
attribution in cases of poor morphological characters, i.e. in flagellates. For example, 
without the support from molecular data, the tiny single cells flagellate Phaeocystis cor-
data Zingone & Chrétiennot-Dinet (Fig. 5d) would have hardly been attributed to a 
genus that is mainly identified by its conspicuous colonial stages (Zingone et al. 1999a).

Successfully, taxonomic research at LTER-MC has retained a traditional morpholog-
ical approach at the same time as embracing different aspects of the species identity, such 
as phylogeny (Kooistra et al. 2010 , Gaonkar et al. 2018), life cycles (Levialdi Ghiron et 
al. 2008, Amato et al. 2005, D’Alelio et al. 2009b), mating compatibility with closely 
related species (Amato et al. 2007, D’Alelio et al. 2009a), biochemistry (Lamari et al. 
2013, Nanjappa et al. 2014b), physiology and metabolomics (Degerlund et al. 2012, 
Huseby et al. 2012), feeding strategies (Modigh and Franzè 2009, Mahadik 2014), be-
havior (Bianco et al. 2013, Mahadik et al. 2017) as well as ecological aspects like species 
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Figure 5. Some of the microalgal species discovered in the Gulf of Naples. a Skeletonema dohrnii Sarno 
& Kooistra, a species very similar to S. marinoi Sarno & Zingone, discovered instead in the Adriatic Sea. 
Both species bloom in late winter-early spring, whereas the most abundant species in the GoN, S. pseudo-
costatum, blooms in late spring b Bacteriastrum parallelum Sarno, Zingone & Marino, a solitary diatom 
species in a genus entirely consisting of colonial species c Azadinium dexteroporum Percopo & Zingone, a 
dinoflagellate producing several toxins of the group azaspiracids, and the first in this genus discovered in 
the Mediterranean Sea d Phaeocystis cordata Zingone & Chrétiennot-Dinet, a prymensiophyte that differs 
from all the congeneric species because it apparently lacks a colonial stage.

diversity during blooms (Orsini et al. 2004) and phenology (Cerino et al. 2005, D’Alelio 
et al. 2010). It was precisely the latter trait, which can only be inferred from long-term 
observations, that draw attention to certain taxa, e.g., ’Skeletonema costatum (Greville) 
Cleve’ showing different seasonality between the Tyrrhenian and Adriatic seas, or ‘Lepto-
cylindrus danicus Cleve’ occurring all year round in the GoN. These phenological peculi-
arities inspired detailed studies on these previously ill-defined taxa, with relevant insights 
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into their actual diversity and the seasonal occurrence of the redefined species, which 
demonstrate the reciprocal advantages of taxonomic and ecological studies conducted at 
the same place. Over the years, this cutting edge approach to taxonomy has resulted in 
pioneering researches that have soundly demonstrated cryptic and pseudo-cryptic diver-
sity as common features in microbes. Results obtained on iconic phytoplankton species 
such as the dinoflagellate Scrippsiella (D’Onofrio et al. 1999, Montresor et al. 2003) and 
the diatoms Pseudo-nitzschia (Amato et al. 2007, Amato and Montresor 2008), Skel-
etonema (Zingone et al. 2005, Sarno et al. 2005, 2007) and Leptocylindrus (Nanjappa 
et al. 2013) have definitely challenged some common paradigms on marine microbes. 
For example, the idea that they are ubiquitous and opportunistic, being able to thrive 
in any place (e.g., Finlay 2002), has been contrasted by the first evidences of clearly 
distinct temporal and phylogeographic patterns (Kooistra et al. 2008, Nanjappa et al. 
2013, Ruggiero et al. 2015), subsequently confirmed also for cryptic species with HTS-
metabarcoding investigations (Nanjappa et al. 2014a, Gaonkar 2016, Pargana 2017).

The description of diversity has been further deepened at the population level 
in the case of the diatom Pseudo-nitzschia multistriata (Takano) Takano, selected as 
a model, which was found to consist of genetically distinct populations (Fig. 6) in 
samples collected at LTER-MC over four consecutive years (Tesson et al. 2014). This 
result, further confirmed in two subsequent years (Ruggiero et al. 2018), has been in-
terpreted as the outcome of genetic recombination regularly occurring in this species 
(D’Alelio et al. 2009a, 2010) coupled with the rapid diversification during vegetative 
growth (Tesson et al. 2013). Interestingly, during the autumn bloom in 2013, a ‘clonal 
expansion’ event took place, with the sudden increase of diversification by mutation 
and the subsequent dominance of a single genotype. The availability of genomic re-
sources for P. multistriata will allow deeper investigations into the dynamics of evolu-
tionary adaptation to changing environmental conditions in the GoN.

Accurate data on species diversity gathered at the LTER-MC site have also enabled 
the discovery of a number of potential Invasive Alien Species (IAS). The definition and 
detection of IAS in plankton organisms are particularly tricky and biased by several 
factors, such as difficult identification, spatial patchiness and ephemeral occurrence. 
All these problems can be partially overcome in places where plankton species are 
properly identified over a long-term period. At the LTER-MC station, at least two dia-
tom species, Pseudo-nitzschia multistriata and Skeletonema tropicum Cleve, were never 
recorded until 1995 and 2002, respectively, despite their relatively easy identification 
(Zingone et al. 2003, Zenetos et al. 2010, Corriero et al. 2016,) and the non-indig-
enous calanoid copepod Pseudodiaptomus marinus Sato, 1913 (Sabia et al. 2015) has 
suddenly appeared in recent years. Interestingly, at least one case of local extinction 
has also occurred with Pseudo-nitzschia subpacifica (Hasle) Hasle, never retrieved in the 
area as of 1988 (Zingone et al. 2003).

Considering the possible impact of potentially toxic and harmful species in such 
a densely populated area as the GoN, the high attention paid to the taxonomy and 
distribution of these species in the area is not surprising. A more detailed description 
and a sound taxonomic assessment have been provided for several harmful diatom 
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Figure 6. Different Pseudo-nitzschia multistriata populations, identified by microsatellite marker analysis, 
succeeding one to the other at station LTER-MC from 2008 to 2014. Redrawn from Ruggiero et al. (2018).

(e.g., Orsini et al. 2002, Cerino et al. 2005) and dinoflagellate species (e.g., Zingone 
et al. 1998, Escalera et al. 2014, 2018). In many cases, non-toxic species have been 
discovered in the GoN which only show subtle morphological differences from the toxic 
congeneric ones, as in the case of the dinoflagellates Alexandrium tamutum Montresor, 
Beran & U. John, similar to the toxic A. minutum Halim (Montresor et al. 2004), and A. 
mediterraneum U. John (group II), similar to the toxic A. catenella (Whedon & Kofoid) 
Balech (group I) and A. pacificum Litaker (group IV) (John et al. 2014), and the diatom 
Pseudo-nitzschia mannii Amato & Montresor, hardly distinguishable from the toxic 
P. calliantha Lundholm, Moestrup & Hasle (Amato and Montresor 2008). Recently, 
the first Mediterranean species of the dinoflagellate genus Azadinium, A. dexteroporum 
Percopo & Zingone (Fig. 5c), has been discovered in the GoN (Percopo et al. 2013), 
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along with a suite of new, probably toxic azaspiracids that it produces (Rossi et al. 2017). 
Overall, about 50 toxic and/or potentially harmful species have been detected over the 
years in the area, where the time series and additional sampling have contributed relevant 
data on their distribution and seasonality (Zingone et al. 2006b and unpublished data). 
This precious information can help with identifying periods of the year of higher risk of 
toxic species occurrence, providing guidance to informed monitoring and contributing 
to improve the management of toxicity outburst and the protection of food security.

Molecular diversity: the metabarcoding approach

The detection and quantification of species that are difficult to identify with morphol-
ogy-based methods have been a goal for many years at LTER-MC, where a number of 
different attempts have been made to introduce adequate methods (McDonald et al. 
2007a, b, Barra et al. 2013, Santamaria et al. 2015, McNamee et al. 2016). The direct 
access to molecules that are diagnostic for the individual taxa has opened a whole new 
range of possibilities for the study of microbial life, which has been scarcely known 
hitherto because of incomplete sampling, difficult cultivation and inadequate identi-
fication tools. To obtain the whole list of species from a single sample has been a long 
held dream that has now come true with the introduction of metabarcoding. The first 
and most comprehensive experiments using this approach have concerned sampling 
cruises at a local and worldwide scale (e.g. Moon-Van der Staay et al. 2001, de Vargas 
et al. 2015). Yet it has soon been acknowledged that the use of this new powerful tool is 
maximized at places with a sound background knowledge of the system, which allows 
for taking full advantage of the new information by integrating it with that deriving 
from classical methods (Davies et al. 2014, Stern et al. 2018).

Metabarcoding studies at the LTER-MC site started soon when the new molecular 
technologies became available to marine research. First tests demonstrated the poten-
tial of metabarcoding to overcome the two most arduous obstacles in diversity studies, 
i.e., the bad identification of species hardly seen in fixed material (e.g., tiny flagellates) 
and the difficulty to trace cryptic species in the environment. A great diversity and 
abundance of Prymnesiophyceae, until that time uncovered, was highlighted for the 
first time at LTER-MC in a study using dot blots and clone libraries (McDonald et al. 
2007a), which also confirmed results on the seasonality of several cryptophyte spe-
cies obtained with culturing methods (Cerino and Zingone 2006). In addition, hardly 
distinguishable, toxic and non-toxic species of the diatom genus Pseudo-nitzschia were 
first identified using PCR on environmental DNA samples with genus-specific LSU 
rDNA primers, followed by cloning (McDonald et al. 2007b). The latter experiment 
confirmed the idea, initially proposed based on strain isolation and culturing, that 
during seasonal blooms several almost identical congeneric species may coexist (Orsini 
et al. 2004). Subsequently the whole annual cycle of Pseudo-nitzschia species was re-
constructed with the same approach, highlighting the high diversity of this genus and 
the different seasonality of the apparently alike species that belong to it (Ruggiero et al. 
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2015). In all these cases, the samples to submit to molecular analysis were selected based 
on the knowledge of the seasonal occurrence of flagellates and Pseudo-nitzschia acquired 
in years of morphology-based investigations, while the interpretation of the results was 
robustly supported by the comparison between molecular and light-microscopy results 
from the same samples, thus definitely proving that genomic observatories do benefit 
from background and contextual knowledge obtained with classical methods.

The huge diversity of prymnesiophytes in the plankton was subsequently confirmed 
by the first metabarcoding study in the GoN that used High Throughput Sequencing 
(HTS) on protist amplicons obtained with specific haptophyte primers, in the frame of 
the EU project BioMarKs (Bittner et al. 2013). Within the same project, the LTER-MC 
station was compared with five other European sites addressing the distribution of pro-
tists in coastal waters (Massana et al. 2015), rare species (Logares et al. 2014), the sedi-
ment assemblages (Forster et al. 2016) and the diatom community (Piredda et al. 2018).

Temporal changes in planktonic protist compositions at LTER-MC were investi-
gated in a dedicated metabarcoding study carried out on eight sampling events over one 
year (Fig. 7, Piredda et al. 2017b). The presence of about 6,000 OTUs, many of which 
not attributable to any known protist genus, in such a limited number of samples, point-
ed to the high and largely unexplored diversity of the marine microbial world, at the 
same time revealing high variations of their diversity across the seasons, with a maximum 
in winter. Also in this case a correspondence was highlighted with samples analyzed 
with classical methods focusing on diatoms, for which the most complete datasets exist 
for both reference sequences and morphological identification. Metabarcoding analyses 
were also successfully applied to diatom resting stages, obtaining a quite complete pic-
ture of the diversity of the seed bank in the LTER-MC sediments (Piredda et al. 2017a).

The implementation of molecular studies in long term plankton observatories is 
nowadays occurring at several places, with slightly different approaches and methods 
(Stern et al. 2018) that need to be harmonized to allow for full intercomparability of 
the results. In this respect, the experience and knowledge gained at the LTER-MC site 
represent a useful contribution to the development of appropriate methodologies as 
well as a convincing example of the value of introducing such molecular approaches in 
classic, morphology-based ecological research on plankton organisms.

Life cycles

The LTER-MC time series has offered the precious opportunity not only to deepen 
the knowledge on plankton diversity but also to shed light on different phases in the 
life cycles of individual species, such as the many developmental stages of copepods or 
the benthic stages of many planktonic protists. Understanding the structure of species 
life cycles, along with the external (environmental) or internal (biological) cues that 
determine life-stage shifts and impact their viability, provides a framework to interpret 
the success and occurrence of the species across the seasons and the way they interact 
with the environment and with other organisms.
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Figure 7. Protist seasonality at station LTER-MC, as revealed by the relative abundance of reads ob-
tained by High Throughput Sequencing (HTS)-metabarcoding using two different 18S rDNA sequence 
fragment, V4 and V9. For each protist group, read abundance on different sampling dates was normal-
ized over the total abundance of that group, in order to show the marked differences in seasonal patterns 
among groups. With the exception of a few cases, V4 and V9 gave similar results. From Piredda et al. 
(2017b), by permission of Oxford University Press.

For plants and metazoans, life cycle is defined as a series of changes and develop-
mental stages that an organism passes through from the beginning of its life until its 
death. In protists, different stages correspond to distinct forms in which cells of a spe-
cies exist in the environment, which may exhibit different morphologies, perform in 
different ways and follow a different destiny (von Dassow and Montresor 2011). The 
capability to enter a resting phase is probably the aspect of the life cycle of planktonic 
unicellular organisms that has attracted the most attention. Resting stages have a dif-
ferent morphology and/or physiology as compared to the vegetative cells that grow in 
the water column. Resting stages can survive in the sediments for many years, thus 
constituting a sort of ‘seed bank’ of diversity which, upon germination, inoculates the 
water column with vegetative cells. In the GoN, 59 dinoflagellate cyst morphotypes 
(less than 20% of the dinoflagellate species found in the plankton) were recorded in 
surface sediments and sediment traps (Montresor et al. 1998), with high production 
rates (up to 1.7 × 105 cysts m-2 day-1) and rather similar species composition over two 
years investigated (Fig. 8a). The cyst assemblage was dominated by calcareous cysts of 



Adriana Zingone et al.  /  Nature Conservation 34: 273–310 (2019)290

Scrippsiella species and small organic-walled cysts produced by unarmoured dinoflagel-
lates. The abundance of viable diatom resting stages in sediments from LTER-MC was 
instead estimated with the Most Probable Number method applied to Serial Dilution 
Cultures (MPN-SDC), because their small size prevents their direct observation in the 
sediments. On eight sampling dates spanning over a year-and-a-half, 30 diatom species 
(ca 1/3 of those recorded in the plankton) were obtained from sediment germination 
(Montresor et al. 2013), of which the most abundant were Skeletonema pseudocostatum, 
Leptocylindrus danicus, Chaetoceros socialis (Fig. 8b) and other Thalassiosirales. A pilot 
experiment comparing the results of the MPN-SDC and the HTS-metabarcoding ap-
proaches demonstrated a good match between the two methods (Piredda et al. 2017a).

Another crucial phase of protist life cycle is sexual reproduction which, besides 
its importance for genetic recombination (for the Pseudo-nitzschia genus, see D’Alelio 
and Ruggiero 2015 and Ruggiero et al. 2018), in diatoms produces large sized cells 
that counteract the progressive cell miniaturization that features their vegetative phase 
(Montresor et al. 2016). In the laboratory, basic information was obtained on sexual 
reproduction of selected Pseudo-nitzschia species from LTER-MC (Amato et al. 2005, 
Amato and Montresor 2008, D’Alelio et al. 2009b). These potentially toxic species 
have become models for several studies partly because they are heterothallic, i.e., sex 
can only occur when cells of opposite mating type are co-cultured, which has also al-
lowed for testing the biological species concept and elucidating the actual diversity 
among cryptic or pseudo-cryptic species (Amato et al. 2007).

At LTER-MC, one of the few massive sex events ever recorded for diatoms in the 
natural environment has taken place, whereby two different species, P. cf. delicatissima 
and P. cf. calliantha, were found to undergo sex at the same time (Sarno et al. 2010). 
The ephemeral nature of these events may explain why such reports are so scanty, 
but cell-size variations and the presence of large-sized cells formed following sexual 
reproduction can provide an indirect way to infer the occurrence of diatom sex in the 
natural environment. Indeed, records of P. multistriata cell-size in plankton samples 
from LTER-MC over ten years, coupled with a modelling approach, showed that this 
species undergoes sex every two years (D’Alelio et al. 2010), which to date represents 
the only indication of an internal clock that rules the occurrence of sex and the shift of 
growth phase across the seasons in diatoms. More sophisticated tools are offered today 
by genes expressed during sexual reproduction, first identified in some diatom species 
from LTER-MC (Patil et al. 2015, Basu et al. 2017, Nanjappa et al. 2017), which can 
be searched in protist meta-transcriptomes, with a great potential to shed light on the 
actual occurrence of sexual events in the natural environment.

Life history traits in zooplankton at station LTER-MC have been analysed in con-
spicuous copepod species, such as Acartia clausi, Centropages typicus and Temora stylif-
era, with particular focus on reproduction and development. Results of experimental 
and in situ studies on egg production, hatching success, survival and temporal distribu-
tion of naupliar and copepodite stages showed remarkable differences among species 
that highlight the characteristic strategies of species co-occurring in temperate areas 
(e.g., Ianora and Buttino 1990, Ianora 1998, Di Capua and Mazzocchi 2004, Carot-
enuto et al. 2006). In C. typicus and A. clausi, the highest egg production rates were 
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Figure 8. Phytoplankton resting stages at station LTER-MC. a Dinoflagellate cyst fluxes (cysts × 105 m-2 
d-1); average monthly values over two years (1994 and 1995) (data from Montresor et al. 1998) b abundance 
of spores of Chaetoceros socialis (circles, viable spores × 103 g-1 of wet sediment) in April, June, September 
and November, and average monthly cell abundance (log10(n+1) ml-1) of spore-forming diatoms (light gray 
polygon) and of C. socialis in the plankton (dark gray polygon) (data from Montresor et al. 2013).

recorded at relatively low female abundance and viceversa suggesting that copepods 
invest resources towards reproduction only in specific periods of their annual cycle, in-
dependently from the number of females in the population (Ianora and Buttino 1990, 
Ianora et al. 1992). However, Ianora and Poulet (1993) provided the first evidence that 
egg hatching success is also linked to food quality, with egg production and viability 
benefiting from a dinoflagellate diet and being impaired by a diatom diet. These results 
set the ground for a series of studies showing that some diatom species produce second-
ary metabolites (PUA and various oxylipins) that affect hatching success and naupliar 
viability (Ianora and Miralto 2010). The crucial role of food quality but also of differ-
ent mortality rates of the various developmental stages in shaping population dynamics 
was proven by a Lagrangian individual-based model run with data of T. stylifera popu-
lations at LTER-MC (Mazzocchi et al. 2006). Indeed mortality, by both natural causes 
and predation, is a fundamental process that affects zooplankton population dynamics. 
As an example, the average percentage of carcasses at LTER-MC has been estimated to 
be around 10% of the total copepod population, with juveniles always more vulnerable 
as compared to adults (Di Capua and Mazzocchi 2017).

Overall these studies, along with similar ones from other areas (e.g., Johnson et al. 
2008, Renz and Hirche 2006), highlight the importance of knowing population de-
mography for different species in order to better understand the variability in structure 
and temporal course of zooplankton at sea. Significant long-term trends of zooplank-
ton populations have been observed around the world (Harris et al. 2014) and some 
evidence of declines is appearing also in the GoN (M.G. Mazzocchi, I. Di Capua and 
I. Carotenuto unpublished data), which should be elucidated by tracing the environ-
mental changes that may have occurred in critical periods of the year, thus affecting 
specific life cycle phases of individual species. This is very relevant also for the possible 
repercussions on the trophic web structure and the productivity of the sea.
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Biological interactions

In addition to endogenous rhythms dictated by life cycles and exogenous environmental 
forcing, the occurrence and seasonality of plankton species can be determined or modulated 
by positive or negative interactions with other co-occurring organisms. One such obvious 
case is represented by trophic relationships, which have received much attention since the 
first studies on plankton ecology and have started to be investigated at LTER-MC as well.

Plankton communities are complex ensembles of unicellular organisms with differ-
ent metabolism types, from strictly photoautotrophic to phagotrophic and mixotroph-
ic (i.e., microzooplankton or protozooplankton), which can shift between heterotrophy 
and autotrophy, and multicellular organisms with distinct diets, from predominant 
herbivory to omnivory or strict carnivory: plankton organisms therefore can display 
multiple trophic interactions, which result in complex food-webs (e.g., D’Alelio et al. 
2016b). Grazing experiments in the GoN involving the lower levels of the plankton 
food-web, namely phyto- and microzooplankton, have revealed: i) a seasonality in the 
consumption of phytoplankton by microzooplankton, with higher rates during winter 
compared to spring and summer (> ~30%) (Modigh and Franzè 2009); and ii) a strong 
‘cannibalism’ among heterotrophic protists, with up to 78% of microzooplankton pro-
duction not exported to higher trophic levels but consumed within microbial trophic-
loops (Franzè and Modigh 2013). Furthermore, grazing experiments with diatoms sug-
gested that copepods from LTER-MC, despite size- selectivity, display a predominantly 
generalist and plastic trophic behavior (Mahadik 2014, Mahadik et al. 2017).

The multiple and flexible trophic interactions occurring within plankton have 
recently been explored taking advantage of the detailed information on species that 
occupy different trophic levels and using LTER-MC as a model system for develop-
ing conceptual and computational models of the plankton food web. A first model 
(D’Alelio et al. 2015) has targeted the whole plankton community during the summer 
season in the years 2002–2009, from nanoflagellates to predatory mesozooplankton 
(individual size spanning from 5 μm to 2 × 103 μm). Co-variations of species trends 
were used as evidence of the different trophic links, which were assembled into net-
works that were investigated in order to identify the response of the system as a whole to 
different trophic conditions (e.g., Loreau 2010). Besides a well-resolved reconstruction 
of the web of trophic interactions, it has been possible to test the response of this web 
to short-term physical-chemical variability typical of the coastal GoN (Ribera d'Alcalà 
et al. 2004, Cianelli et al. 2017). The trophic network (Fig. 9) was dominated by links 
connecting phytoplankton and mesozooplankton during coastal, eutrophic states and 
by microbial loops during offshore, oligotrophic states (D’Alelio et al. 2015). Other 
interesting characteristics of the GoN plankton food web were that: i) the resource 
intermittency may propagate from individuals to individuals’ interactions; ii) the com-
munity may respond ‘adaptively’ to oscillations between eu- and oligotrophy; and iii) 
biological diversity seems to be the main driver of this latter system response.

Building on this conceptual model, a food-web computational model was subse-
quently developed and fed with data of carbon biomass fluxes derived from LTER-MC 
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Figure 9. A simplified version of a food web in the Gulf of Naples in eutrophic (Green) and oligotrophic 
(Blue) summer conditions, modified from D’Alelio et al. (2016a). Briefly, in the Green system state, both 
copepods and microzooplankton exert a strong grazing pressure on phytoplankton, while in the Blue 
state, copepods increase their predation over microzooplankton, which in turn shifts its predation from 
phytoplankton to bacterial plankton or picoplankton. These trophic mechanisms stabilize the delivery of 
organic matter from copepods to fish.

studies, complemented with available knowledge concerning the biological characteris-
tics of plankton organisms from the GoN (D’Alelio et al. 2016a, b). The model built by 
exploiting the Ecopath methodology allowed for reconciling, within a single network 
framework, three important ecosystem properties: how many species are there (com-
munity biodiversity), how these relate reciprocally (community structure) and what 
they do collectively (community functioning) (Thompson et al. 2012). The Ecopath 
model indicates that almost all consumers in the plankton food-web are capable of 
switching trophic preferences based on available resources, i.e., when the system shifts 
between eu- and oligotrophic states, and it also suggests the ecological importance of 
neglected biological processes, such as mixotrophy and differentially selective feeding by 
micro- and mesozooplankton. These characteristics expand the hyperspace of potential-
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Figure 10. Viral infection in the prasinophyte Micromonas pusilla. a Transmission electron micrograph 
of an infected cell b abundance of the virus and its host at station LTER-MC in spring 1996 (data from 
Zingone et al. 1999b). In the following two years the seasonal trend of host and virus appeared to be less 
coupled, which pointed to complex relationships between different viral and host strains.

ly available trophic pathways, thus conferring the protozoan-metazoan links the highest 
trophic efficiency (i.e., the highest ratio between the biomass taken up by a trophic 
level and that delivered by the same trophic level to the subsequent one). This high 
efficiency allows dampening the negative effect of the decrease in primary production 
on planktivorous fish production at the oligotrophic system state. Specifically, when 
phytoplankton biomass was seven-fold lower than at the eutrophic state, calanoid cope-
pods significantly increased their grazing pressure on protozooplankton, which, in turn, 
increased their pressure on picophytoplankton, less consumed by calanoids because of 
their small cell size. Instead the food-web was highly dissipative at the lowest trophic 
levels, i.e., at phytoplankton-protozooplankton trophic step: the matter and energy not 
delivered at the higher level of the web was apparently used by protozooplankton as a 
resource to maintain species survival and, thus, the diversity of unicellular heterotrophs.

Unlike trophic relationships, other forms of interactions among organisms in the 
plankton have received less attention until recently. For example, the impact of viruses 
on the dynamics of planktonic populations is still hardly known and few are the species 
for which viruses have been identified. One such case is Micromonas pusilla (Butcher) 
Manton et Parke, a small prasinophycean flagellate abundant at LTER-MC from au-
tumn to early spring. Viruses specific for this species (Fig. 10a) were recorded all over 
the period in which the host was present at sea, along with a great intraspecific variabil-
ity in host susceptibility to the viruses (Zingone et al. 1999b). In some cases, peaks of 
the host were accompanied by an increase in viral concentrations, showing that viruses 
were responsible for algal mortality (Fig. 10b). However, based on results of three con-
secutive years, there was no evidence that viruses were able to terminate the host bloom. 
In fact, viral strains isolated from the GoN showed differences in infection capability 
when tested on strains of M. pusilla from the same area and from different geographic 
sites (Zingone et al. 2006a). In addition, host cultures generally recovered after the 
infection and became resistant to infection from the same virus. These results highlight 
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the complex dynamics of algal-virus interactions, where diversity in viral infection ca-
pability, coupled with differences in intraspecific susceptibility of the host and differ-
ences in acquired resistance to the viruses, interplay to generate a sort of equilibrium.

Parasites also represent a poorly known loss factor in planktonic population dy-
namics. The limited information available at LTER-MC was obtained for the cope-
pod Paracalanus parvus where females and juveniles were parasitized by dinoflagellates 
(Ianora et al. 1987, 1990). Infections by Syndinium were greatest in juveniles (up to 
30%) than in adult females (8%) and completely absent in males. The identification 
of parasites in unicellular organisms is challenging, but HTS-based metabarcoding 
approaches are now available and showed that Syndiniales can be relatively abundant 
components of the protist community (Piredda et al. 2017b).

Conclusions and future perspectives

More than three decades of studies at station LTER-MC in the Gulf of Naples have 
definitely proved the relevance and potentiality of this research site as a precious as-
set not only to trace plankton changes at different scales and under different envi-
ronmental conditions but also as a natural laboratory and a source of inspiration for 
complementary scientific research that has widened substantially our knowledge of the 
planktonic organisms and of the system as a whole.

As typical for coastal areas, the temporal course of the water column environment 
has shown to be remarkably variable throughout the years. Nevertheless, a notable resil-
ience has characterized the plankton assemblages both in their bulk properties and at the 
level of individual species, with repeated seasonal patterns pointing to some biological 
and functional adaptability. These properties are also featured in the flexible organization 
of the food web under different hydrographic conditions, which points to a behavioral 
plasticity of individual species, as also disclosed by targeted experimental studies. Still the 
trends that have been recorded for temperature, chlorophyll and phytoplankton size, and 
the significant changes recorded in the abundance and phenology of some species need 
to be investigated in depth in their role of possible sentinel of environmental changes.

A fraction of the hidden marine diversity has been uncovered with the description 
of a high number of phytoplankton species and the elucidation of crypticity, which 
have greatly improved the capability to interpret seasonal and biogeographical patterns 
so far blurred by the misidentification of the significant taxonomic units. These results 
support the consideration that precision in taxonomic identification is a requisite of 
ecological studies, and in many cases higher taxa (e.g., genera or classes) include too 
much diversity to be ecologically meaningful. Further, placing specific, intraspecific 
and population variability in the frame of natural environmental variability has proven 
to be a good opportunity to shed light on both the ecological meaning and the evolu-
tionary potential of diversity. High diversity in planktonic elements has also emerged 
from the analysis of small-scale behavior and life-history traits such as development, 
reproduction and dormancy, as well as natural and pathological mortality. Overall, 
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the results of these studies highlight the fundamental role of biological processes and 
individual performances in the coexistence and/or succession and phenological charac-
terization of the species, beyond the influence of environmental conditions.

In spite of the quite wide-ranging results obtained so far, much remains to be done 
in terms of exploring and filling the knowledge gaps emerging from them and gaining 
further comprehension of the planktonic system. In addition to in-depth studies on the 
data set and complementary research in line with what has been done so far, the com-
plexity of plankton diversity and dynamics prompts us to further extend and intensify 
our efforts using novel approaches. To this end, an augmented marine observatory is 
being established which couples traditional and -omics approaches applied at the fixed 
LTER-MC and periodically over a larger spatial grid. In addition, sustained record-
ing by means of fixed mooring bearing optical and acoustic sensors and biomolecular 
samplers is planned to complement the traditional data gathering procedure. The aug-
mented observatory is aimed at a complete characterization of plankton communities 
(meta-barcoding and meta-genomics) and of their functions (meta-transcriptomics) 
through the analysis of barcodes, complete gene sets and their expression patterns. This 
empowerment of the LTER-MC research activities will also allow investigating other 
planktonic taxa neglected so far (e.g., jellyfish and fish larvae) and including further 
trophic links into pre-existing ecological networks and will likely shed further light on 
the processes underlying the extraordinary plankton world.
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