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Abstract

Context In efforts to mitigate anthropogenic impacts

on floodplain biodiversity, restoration measures that

enhance habitat connectivity have been applied.

However, these approaches have either neglected the

spatial position of water bodies or the dynamic nature

of the floodplain ecosystem.

Objectives This study focuses on the novel applica-

tion of the multilayer network framework to assess

changes in the aquatic habitat connectivity in flood-

plains, showcasing its application in the context of

aquatic passive dispersal (drift) of two indicator

groups of benthic macroinvertebrates (Oligochaetes

and Chironomids)

Methods Our case study is located in the Donau-

Auen National Park in Austria and follows floodplain

restoration measures (side-channel reconnection)

applied in the mid-1990s. Multilayer networks were

constructed to represent the conditions before, short-

term, and long-term after restoration to quantify

habitat connectivity across inundation frequencies.

Our network analyses involved multilayer correlation,

static and dynamic monolayer centralities (centrality

profiles), and multilayer centrality assessments. We

used a Partial Least Squares Regression analysis as a

variable selection tool to identify which centrality

measures better explained the variance in a diversitySupplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
s10980-024-01975-0.
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and Local Contributions to Beta Diversity (LCBD) of

benthic macroinvertebrates.

Results In the short-term, our connectivity analysis

indicated an increase in habitat connectivity. How-

ever, centrality profiles, multilayer correlation, and

multilayer centrality techniques identified a long-term

decrease in connectivity. Multilayer centralities had

higher Variable Importance in the Projection scores

(VIP) than their monolayer counterpart in explaining

variations in a diversity and LCBD for strict aquatic

dispersers. Meanwhile, for flying dispersers, mono-

layer centralities had the highest VIP scores for

explaining a diversity.

Conclusions This study underscores the relevance of

integrating dynamic aspects of water-mediated trans-

port beyond traditional pairwise distances. Although

in this study we apply this tool by showcasing the

aquatic passive dispersal mode, the application of this

method can be extended to other dispersal modes and

representative abilities for diverse groups of aquatic

organisms. The expanding cross-disciplinary applica-

tions and open-source tool development for multilayer

networks offer practical implications for planning and

evaluating management measures.

Keywords Multilayer networks � Floodplains �
Floodplain restoration � Multilayer centralities �
Benthic macroinvertebrates

Introduction

Floodplain landscapes have been subjected to long-

term anthropogenic stressors, contributing to global

freshwater biodiversity loss (Hein et al. 2019; Tickner

et al. 2020). These stressors include the alteration of

the physical structure of the landscape (e.g., river

regulation and damming) and subsequent changes in

flow, which in turn causes the decoupling of flood-

plains from the main river channel (Reckendorfer

et al. 2006; Hein et al. 2019; Whipple and Viers

2019). To mitigate the detrimental effect of some of

these anthropogenic stressors, an increasing number of

river–floodplain restoration/rehabilitation measures

have aimed to achieve more dynamic geomorphic

and hydrologic processes promoting a dynamic habitat

mosaic (Poff et al. 1997; Hein et al. 2016; Marle et al.

2022). However, the extent to which restoration

affects the habitat connectivity of freshwater biodi-

versity, especially within floodplain ecosystems,

remains poorly understood (Al-Zankana et al. 2020).

Landscape ecology provides a framework based on

network science to describe the relationships between

ecological patterns and processes across spatial scales

(Newman et al. 2019; Tiwari et al. 2023). In Fig. 1

and Table 1, we provide a conceptual model and a

glossary with the main connectivity-related concepts

used in this study. Notably, the widespread practical

applications of network science tools in landscape

ecology lie in utilizing monolayer centralities to

identify areas that play the most central role and,

thus, where conservation efforts can be prioritized

(Kininmonth et al. 2019). However, most of the

available network tools are typically applied to

monolayer networks depicting static landscape prop-

erties. Like other dynamic systems, floodplain ecosys-

tems generally exhibit multiple changes in their

structural and functional connectivity (see habitat

connectivity definition in Table 1), where the presence

or absence of aquatic corridors depends on inundation

frequencies. The novel approach of multilayer net-

works can help to overcome this challenge since it can

include dependencies between seasonal or temporal

static representations of the landscape (monolayer

networks, Pilosof et al. 2017). In the case of flood-

plains, the multilayer network framework can help

incorporate the frequency of lateral hydrological

connectivity (LHC, see definition in Table 1) into

connectivity calculations. While there are recent

examples of applications of multilayer networks in

species interaction networks (Timóteo et al. 2018;

Costa et al. 2020), to our knowledge, this framework

has not yet been applied to assess habitat connectivity

in floodplains.

Worldwide, floodplains are among the most

dynamic ecosystems, where the lateral water connec-

tions with the main river channel and fluctuations in

flow are vital for determining the diversity of benthic

assemblages (Larsen et al. 2019; Marle et al. 2022).

The highly diverse benthic macroinvertebrate fauna of

the Danube River, like in most European large rivers,

is under extreme pressure (Graf et al. 2015). Com-

pared to the early nineteenth century, the Danube

River, which is the second largest river in Europe, has

suffered an 80% reduction of its floodplains due to

land-use change, river regulations, and damming

(Hein et al. 2016; Buijse et al. 2002). To mitigate

123

  186 Page 2 of 27 Landsc Ecol          (2024) 39:186 



the freshwater biodiversity loss, examples of river-

restoration measures in the Danube basin targeted the

disconnection of floodplains from the main river

channel by re-establishing hydrological connections

(e.g., Tockner et al. 1999; Navodaru et al. 2005;

Natho et al. 2020) and, therefore, increasing the

localized hydraulic shear stress that drives changes

in benthic macroinvertebrates assemblies (Paillex

et al. 2013; Obolewski et al. 2016; Marle et al.

2022). A key remaining challenge for managing

river–floodplain ecosystems is understanding how

biodiversity relates to spatio-temporal changes in

ecological patterns, processes, and habitat structure

(Larsen et al. 2019). Therefore, conceptualizations of

connectivity that include dynamic hydrological

aspects, the spatial arrangement of habitat patches,

and the patterns of their connections (network topol-

ogy) can significantly improve our understanding of

Fig. 1 Conceptual model of monolayer and multilayer net-

work-based representations. In floodplains, functional connec-

tivity functional connectivity will change depending on

inundation frequencies (LHC frequencies that go from 0 to

365 days/year, a, b). Intralayer links in monolayer networks

depict aquatic corridors (structural connectivity—SC) or routes

(functional connectivity) between nodes (b). Intralayer links can
either be undirected or directed and weighted based on costs for

dispersal movements (depicting the property of landscape

resistance) or by dispersal fluxes or probabilities. Some of the

most commonly used cost attributes are Euclidean distance

(Tonkin et al. 2017), network or in-channel distances (Grönroos

et al. 2013; Chaput-Bardy et al. 2017), cost distances

(Zetterberg et al. 2010), least-cost (Adriaensen et al. 2003)

and resistance distances using circuit theory (McRae 2006;

Bishop-Taylor et al. 2015; Dickson et al. 2019). Multilayer

networks can be applied to compile dynamic LHC frequencies

in landscape structures. Monolayer networks constructed for

each defined LHC threshold (b) are compiled as layers in the

multilayer network (c). Each layer has the same nodes (replica

nodes) with different intralayer links. The interconnectedness

between layers is defined by interlayer links between each pair

of replica nodes (multilayer networks type multi-slice, De

Domenico et al. 2015; Bianconi 2018). Interlayer links can be

undirected (categorical couplings) or directed (e.g., ordinal

couplings in temporal networks), unweighted or weighted
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how restoration affects the ecological processes shap-

ing floodplain biodiversity (Funk et al. 2023).

In this study, we focus on the novel application of

the multilayer networks framework to assess changes

in the aquatic habitat connectivity in floodplains. We

present a case study that follows a pilot restoration

project (side-channel reconnections) implemented in

the mid-90s in a river–floodplain stretch in the Donau-

Auen National Park, Austria. Our main objective is to

demonstrate the utility of the multilayer networks

framework in capturing dynamic changes in the

habitat connectivity of two indicator groups of benthic

macroinvertebrates in floodplain ecosystems, show-

casing the dispersal mode of passive aquatic dispersal.

By integrating temporal variations and the property of

landscape resistance (Table 1) into our network mod-

els, we aim to answer the following questions:

(1) To what degree do the restoration-induced

enhancements of LHC influence connectivity

patterns in the landscape?

(2) Do node rankings derived from monolayer

networks significantly change when considering

dynamic LHC aspects in the calculations (mul-

tilayer centralities)?

(3) Which measure of node-level connectivity,

monolayer or multilayer centralities, best cap-

tures the variations in the taxonomic diversity

(in terms of a and b diversity) of the indicator

groups with dispersal-related traits?

In this case study, we pay special attention to temporal

changes in the taxonomic diversity and aquatic habitat

connectivity (aquatic passive) of two indicator groups

of benthic macroinvertebrates with contrasting

Table 1 Glossary with definitions and explanations of the main connectivity-related concepts used in this study

Term Explanation

Landscape resistance Property of landscapes as complex systems which describes how the landscape’s spatial structure

facilitates/impedes animal movement (Newman et al. 2019). Landscape resistance is perhaps one

of the most studied properties in landscape ecology, with an increasing number of studies applying

network theory to calculate habitat connectivity (Minor and Urban 2008; Rayfield et al. 2011;

Urban and Keitt 2001; Er}os et al. 2012)

Habitat connectivity Degree on which the physical configuration of the landscape [structural connectivity (SC) of the

habitat] facilitates dispersal flows/movements of organisms among landscape units (patches)

[functional connectivity (FC) of the habitat, Taylor et al. 1993]

Lateral hydrological

connectivity (LHC)

In floodplain landscapes, LHC refers to the seasonal or permanent water-mediated linkages between

the main stem of a river and the waterbodies along its floodplain (Amoros and Bornette 2002;

Larsen et al. 2019). To avoid ambiguity, further on in this work, we refer to the surface water

exchange between a main river channel and floodplain waterbodies as LHC and to the level of

connectedness within a system as connectivity (Turnbull et al. 2018), which is measured using

network analysis

Node Landscape unit representing aquatic habitat patches (Bishop-Taylor et al. 2015)

Links Links in a static network (for multilayer networks, physical nodes within each layer are connected

with intralayer links) depict surface water connections between direct neighbouring nodes or

aquatic corridors/routes between non-adjacent nodes that are within a certain distance threshold or

decay exponentially with it [origin-destination (OD) links, Bera and Rao 2011; De Domenico

et al. 2015; Dijkstra 2022]

Monolayer network They are also referred to as single-layer networks. Monolayer networks are static representations of

the landscape, formed by a set of nodes connected pairwise by a given set of links describing

either physical connections (structural connectivity) or complex interactions (Bianconi 2018), like

the dispersal of organisms (functional connectivity)

Multilayer network Term for networks with multiple layers (Kivelä et al. 2014)

Multiplex network Multilayer network with diagonal couplings (Kivelä et al. 2014)

Replica nodes Corresponding nodes with the same identity but belonging to different layers (Bianconi 2018)

Multi-slice network Multi-slice networks are multiplex networks with a one-to-one mapping of replica nodes in each

layer using interlayer links (De Domenico et al. 2015; Bianconi 2018)

Centralities Network science tools used to rank nodes according to their importance, the applicability of which

depends on the type of network and the network property to be emphasized (Bianconi 2018)
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dispersal traits: (i) individuals of the subclass

Oligochaeta (strict aquatic dispersers/non-flying), (ii)

individuals of the family Chironomidae of the order

Diptera (flying dispersed). We selected these two

taxonomic groups because they had the highest

taxonomic resolution identified both before and after

restoration, in both the short and long term. Oligo-

chaetes and Chironomids communities are the most

heterogeneous taxonomic groups of benthic macroin-

vertebrates (highest species richness) in the Danube

basin (Graf et al. 2015) and have been used as

indicator species since they have rapid generation

times and respond to gradients in LHC (de Haas et al.

2005; Funk et al. 2017; Larsen et al. 2019). We expect

that the variation of taxonomic diversity of strict

aquatic dispersers would be better explained by

centralities that include dynamic hydrological aspects

(multilayer centralities). For Chironomids, we expect

that static centrality metrics, which reflect the spatial

arrangement of habitat patches, will be more impor-

tant for their taxonomic diversity, as adult flying

dispersers can locate nearby habitat patches indepen-

dently of the hydrological network.

Methods

Case study

Our study area corresponds to a 10 km river–

floodplain stretch of the Donau-Auen National Park

(DANP) called Regelsbrunn (48� 200 3000 N and 16�

180 5000 E) (Fig. 2a). The DANP is 45 km downstream

of Vienna along the Upper Danube River. At this

location, the Danube is a ninth-order river with a mean

annual discharge of approximately 1950 m3/s and a

bank-full discharge of 5800 m3/s, which recurs about

once a year (Funk et al. 2023). Regarding the charac-

teristic water levels of the Austrian Danube, the mean

water level (water level corresponding to the arith-

metic mean of the average annual discharges for the

period 1991–2020) is 281 cm, for the gauge station

Wildungsmauer (viadonau 2020). Likewise, for the

period 1991–2020 at this gauge station, the low

navigable water level (water level that corresponds

to a discharge with an exceedance duration of 94%)

and the highest navigable water level (water level that

corresponds to a discharge with an exceedance

Fig. 2 Location of the Donau-Auen National Park (a) and the

study area of Regelsbrunn. The sites where the reconnection

measures were implemented are represented as black triangle

symbols, and the years and locations where samples of benthic

macroinvertebrates were taken are represented by coloured

symbols (b)
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duration of 1%) are 155 cm and 605 cm, respectively

(viadonau 2020).

Since the mid-90s, this has been an extensively

studied system, where human-made stressors date

back to 1875 when large-scale regulation measures

constrained a wide floodplain area (Chaparro et al.

2019). Further human alterations in the Austrian

Danube (e.g., for the generation of hydropower, flood

protection, and navigation) reduced floodplain ecosys-

tems to less than 19% of their range in the nineteenth

century (ICPDR 2009; Hein et al. 2019). While still

impacted by these regulations, the area of what is now

the DANP remained a free-flowing section (Hein et al.

2016; Chaparro et al. 2019). To mitigate human-made

stressors, the region was declared a National Park in

1996, and shortly after, pilot restoration projects were

implemented in the wetland of Regelsbrunn (Schiemer

et al. 1999; Hein et al. 2016). The pilot restoration

project consisted of the re-connection of abandoned

side channels and wetlands with the main Danube

channel by lowering riverside embankments, reacti-

vating previous inflow channels, removing check

dams, and creating outlets (Chaparro et al. 2019).

While our study does not include specific control sites

to assess the outcomes of restoration, previous studies,

like the ones of Schiemer and Reckendorfer (2004),

Reckendorfer and Steel (2004), and Schiemer et al.

(2007, 2006), have already reported that the applied

restoration measures resulted in an increase of LHC

between the river and side channels (approx. 200 days/

year).

Benthic macroinvertebrates indicator groups

We built on long-term empirical datasets of Chirono-

mids and Oligochaetes collected during sampling

campaigns before (1996) and short-term after (1999)

with a Gilson-corer [number of available samples:

(i) 1996: N = 104; (ii) 1999: N = 47]. In 2020 (long-

term after restoration), new samples were collected in

Autumn, like in the previous years. Samples were

collected in the littoral zone of waterbodies, spanning

a LHC range from 0 to 235 days/year. The range of

LHC in the sampled sites allowed us to capture a broad

spectrum of connectivity conditions and habitat types.

Using a Gilson-corer at 5 to 10 cm depths (area per

sample = 0.002 m2, N = 81), samples were collected

from sandy and muddy organic sediment (Funk et al.

2017). Individuals with a body size greater than 100

lm (macrozoobenthos) were identified to the finest

taxonomic level possible (mostly species or genus

level). Further, for all periods, the count data was

harmonized to a sample area of 1 m2.

Network analysis

We applied a multilayer network analysis to assess

dynamic changes in aquatic habitat connectivity

(directed connectivity). To answer our research ques-

tions, we developed monolayer and multilayer net-

works of a passive aquatic dispersal scenario.

Multilayer networks were built with intralayer links

weighted based on network distances (link cost

attribute) and the probabilities for passive dispersal

(link weight attribute). We applied the following

topological analyses: (a) similarities between static

layers representing the variation in LHC of the

landscape throughout the year (edge overlap) and

(b) monolayered and multilayer centralities analysis.

Subsequently, using a partial least square regression

analysis, we evaluated the importance of static vs.

dynamic connectivity (monolayer and multilayer

centralities) for explaining the variations of taxonomic

diversity of the indicator groups, throughout the time

periods: before, short-term, and long-term after

restoration. A summary of the applied methods can

be found in Fig. 3.

Building monolayer networks

Structural connectivity networks

The structural connectivity of the river–floodplain

landscape is given by surface water connections

between habitat patches, which was extracted from a

Digital ElevationModel using flow routing in ArcMap

10.7.1. Here, nodes were mainly located every 100 m,

and links were defined by the surface water connec-

tions between adjacent nodes. For each time period,

the resulting structural connectivity networks were

directed, following the flow direction, and weighted

based on a cost attribute that acts as a constraint for

dispersal movements (Rodeles et al. 2021). We used

the pairwise in-channel network distances between

nodes as a link cost attribute.

Potential functional connectivity

Accounting only for the connections between imme-

diately adjacent nodes (direct neighbours) might not

consider the functional interactions between non-
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direct neighbouring nodes (Bassolas et al. 2021). For

this reason, network-based metapopulation and meta-

community approaches have assessed habitat connec-

tivity assuming functional connections between

nodes. These functional connections are routes (OD-

links) that are located within the species’ maximum

dispersal distances or where connections decay expo-

nentially with distance (Link definition in Table 1)

(Brown et al. 2011; Chaput-Bardy et al. 2017; Neu-

feld et al. 2018).

While in other network applications, the definition

of functional connectivity networks applies to

dynamic quantities (Voutsa et al. 2021), in this study,

we adopt the probabilistic definitions previously

applied in landscape ecological approaches by Bodin

and Saura (2010) and Rodeles et al. (2021). We define

potential functional connectivity for a scenario of

passive aquatic dispersal (drift). Here, potential func-

tional connectivity is the likelihood for passive drift

(flow-mediated passive downstream dispersal events),

focusing on the role that structural connectivity (based

on surface water connections) has in facilitating

stochastic dispersal flows, where all species have the

same probability of colonizing a site (Huttunen et al.

2017). We assigned dispersal probabilities as a link

weight attribute that considers potential downstream/

upstream dispersal pathways, following the approach

of Baldan et al. (2022a) and Rodeles et al. (2021). We

consider that dispersal (Bij) decays exponentially with

distance/resistance, where asymmetric probabilities

are given by the exponential kernel:

Bij ¼ PD
du

ij
u PD

dd
ij

d ; ð1Þ

where du
ij are the pairwise upstream distances and dd

ij

are the pairwise downstream distances between a pair

of adjacent and non-adjacent nodes, while PDu and

PDd are kernel parameters representing the mobility

Fig. 3 Flow diagram of methods applied to assess changes in aquatic habitat connectivity for a benthic macroinvertebrates
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abilities of the dispersers (Baldan et al. 2022a; Rode-

les et al. 2021).

Aquatic passive dispersal (drift) is considered a

crucial mechanism for shaping the spatial distribution

of benthic macroinvertebrate communities and a

fundamental ecological process with broader food

web applications (Humphries 2002; Tonkin and Death

2013). For Chironomids, which exhibit aerial dispersal

as adults, this dispersal scenario is only representative

for their aquatic passive dispersal stage (larvae). The

restoration measures primarily affected water-medi-

ated connections, and thus, modelling aerial (over-

land) dispersal (i.e., using Euclidean distances

between physical nodes) would not appropriately

capture these changes in connectivity. Therefore, a

scenario of flow-mediated passive downstream dis-

persal was applied for both Chironomids and Oligo-

chaetes, to capture changes in aquatic habitat

connectivity following restoration. We assumed that

dispersal decays exponentially with distance, is

stochastic, driven by hydraulics, and that passive

dispersers (propagules) have the same probability for

aquatic passive dispersal (drift). Given the location of

our study area, we applied the kernel parameters

PDu ¼ 0 and PDd ¼ 3 for passive lowland aquatic

dispersers (see Baldan et al. 2022a). OD links and

their asymmetric probabilities were calculated using

network distances as costs, adapting the function

B_ij_fun of the riverconn package in RStudio

(Baldan et al. 2022b) for disconnected graphs. The

OD-links of the resulting networks were weighted

using the calculated dispersal probabilities (link

weight attribute: dispersal probabilities) and network

distances (link cost attribute: pairwise in-channel

distances between nodes).

Building multilayer networks

We built multilayer networks of the type multi-slice

based on the approach developed by De Domenico

et al. (2015). For each period, multi-slice networks

were built by combining temporal changes in the

landscape structure, using thresholds based on LHC

frequencies. LHC frequencies denote the mean annual

frequency over a 20-year period of total surface

connectivity between the floodplain habitats and the

main river channel (inundation frequencies in days/

year) (Reckendorfer et al. 2006). LHC frequencies are

calculated based on the flow pattern of the main river

channel and the location of the floodplain wetlands

concerning the river height (Reckendorfer et al.

2006).

We included the LHC frequencies representative

for the time periods from before, short-term, and long-

term after restoration, which were previously pub-

lished by Funk et al. (2023) and Reckendorfer et al.

(2006). We used these frequencies to define dynamic

changes in the landscape structure since LHC is key in

determining floodplain ecology, reflecting spatio-

temporal hydrogeomorphologic conditions (Paillex

et al. 2009; Funk et al. 2013; Reckendorfer et al.

2013; Marle et al. 2022).

Further, to reduce the computational cost, we built

multilayer networks by applying sequential thresholds

of LHC frequencies that would capture most of the

variations in landscape structure. To do this, we first

examined changes in landscape structure when apply-

ing daily thresholds (dynamic networks with 365 daily

thresholds). For each monolayer network under daily

thresholds, we calculated the number of (dis)con-

nected components as a measure of variation in

landscape structure or network fragmentation

(Fig. 4). Based on the number of (dis)connected

components, we then identified the maximum thresh-

old of LHC as the threshold at which the network

structures stabilized (Ishiyama et al. 2014). The

maximum LHC threshold for networks before and

after restoration was 89 and 181 days of LHC,

respectively. However, the application of further

multilayer network analysis considering daily layers

can be a data-intensive procedure. Therefore, we then

built multilayer networks by applying thresholds every

10 days until reaching the maximum LHC threshold.

These sequential thresholds of 10 days captured most

of the variability in landscape structure presented in

Fig. 4. The resulting multilayer networks had a total of

10 layers for the time period before restoration and 19

for the periods after.

A monolayer network Ga in layer a is given by

Ga ¼ ðVa;EaÞ, which describes the interactions

between the set of physical nodes Va, where Ea is

the set of intralayer links (connections between habitat

patches) (Bianconi 2018). As an example, a 2-layer

multilayer network can be described as

Ga;beta ¼ ðVa;Vb;Ea;bÞ, where Ea;b are the one-to-

one interlayer links, connecting replica nodes in layer

a to the replica nodes in layer b, i.e., they connect each
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node i in layer a ði; aÞ to its replica node ði; bÞ in layer
b (Bianconi 2018):

Eab ¼ ½ði; aÞ; ði; bÞ�ji 2 1; 2; . . .;N: ð2Þ

For a N number of nodes and M number of layers, a

multilayer network depiction of both intralayer and

interlayer links can be represented using an N � M �
N � M supra-adjacency matrix A (Bianconi 2018).

However, standard matrices may not represent a

suitable framework for interconnected multilayer

networks, as they have an inherent limitation in

depicting complex relationships, and information on

interlayer links information can be lost (De Domenico

et al. 2015). For this, De Domenico et al. (2013) uses a

tensorial formalism and algebras of higher order to

capture the complexity of multilayer networks (more

details on the mathematical formulations of multi-

slice networks can be found in De Domenico et al.

2013, 2015). Multilayer networks were built using

categorical-unweighted interlayer links in the MuxViz

package in RStudio (De Domenico et al. 2015).

Assessing changes in habitat connectivity

Multilayer similarity analysis

The similarities in structural properties of each layer of

multilayer networks were calculated using the metric

global edge overlap proposed by De Domenico et al.

(2015). This metric was used to assess structural

similarities in connection patterns between each one of

the layers composing the multilayer networks from

before, short- and long-term after restoration. For

further details on all network metrics used in this

study, refer to Table 2.

Centrality analysis

Centrality measures are used to find the most central

nodes, which are important for maintaining connec-

tivity at the network level (De Domenico et al. 2015).

Multiple centrality measures can also be applied in

multilayer network models (De Domenico et al.

2015). Each one has the potential to quantify the

importance of replica nodes (see definition in Table 1)

and highlight different aspects of habitat connectivity

Fig. 4 Number of (dis)connected components in dynamic

networks of before (yellow), short-term after (grey), and long-

term after restoration (red), where layers go along 365

sequential thresholds on inundation frequencies [minimum of

days of lateral hydrological connectivity (LHC)]. A (dis)con-

nected component refers to a fully connected graph’s cluster, so

the more (dis)connected components there are, the more

fragmented the network is. Vertical dashed lines correspond to

the final thresholds selected for building multilayer networks

(every 10 days until reaching the maximum LHC thresholds). A

high LHC threshold will only consider connections between

nodes highly connected to the main channel, thus resulting in

more disconnected networks under high thresholds. On the other

hand, a low LHC threshold will consider connections between

most of the nodes in the landscape. Thus, the landscape will

appear as more connected. Before restoration, the network

became fully fragmented at a lower LHC threshold than the

other time periods. Likewise, in the long-term after restoration,

the network became more fragmented at lower LHC thresholds

when compared to the period of short-term after. This indicates a

decrease in connectivity in the long term
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Table 2 Description of the network theoretical metrics used in this study, examples of applications in Landscape Ecology, and

assigned acronyms

Network metric Description Ecological applications Acronyms

Edge overlap: RStudio
MuxViz package (De

Domenico et al. 2015)

Edge (link) overlap is a measure of

similarity in the structural properties of

two static networks (layers, De Domenico

et al. 2015) For a given pair of nodes (i, j),
the edge overlap is given by the fraction of

layers in which the edge/link (i, j) exists

(De Domenico et al. 2015): oij ¼
1
M

PM
a¼1 a

½a�
ij where aij is the adjacency

matrix of the aggregated network

associated with a M-layer multilayer

network; an edge/link between i and j
exists in the aggregated topological

network only if it exists in at least one

layer a on which a½a�ij 6¼ 0

The edge overlap describes the persistence

of the edge/link pattern (De Domenico

et al. 2015) throughout the year in our

multi-slice networks. This is highly

relevant to assess the effects of floodplain

restoration measures that aimed to

increase LHC, thus creating more dynamic

hydrological conditions in the landscape.

Edge

overlap

Network metric Description Ecological applications Acronyms

Strength or weighted Degree:
RStudio igraph package

(Csardi et al. 2006) and

MuxViz package (De

Domenico et al. 2015)

Also known as Strength, it

measures node importance

based on the strength of its

connections. Single-layer

strength refers to the averaged

sum of the weights of the links

arriving (in-strength) and

departing a specific node (out-

strength, Jacoby and Freeman

2016). This metric was applied

to networks weighted using

dispersal probabilities

(importance) and the inverse

of the cost attribute (network

distances). The WD

formulations for multilayer

networks are presented in De

Domenico et al. (2015)

For networks where links are

weighted based on constraints

of flow (network distances),

WD can indicate the tendency

of a node to receive and

transmit ecological flows

based on landscape resistance.

Likewise, for networks

weighted based on dispersal

probabilities, this metric is

used to describe the strength of

a node concerning the

likelihood of

emigration/colonisation

processes (Minor and Urban

2007; Rayfield et al. 2011)

� WD_cost: for
monolayer networks

with links weighted

based on network

distances

� WD_disp: for
monolayer networks

with links weighted

based on dispersal

probabilities

� multiWD_cost: for
multilayer networks with

intralayer links weighted

based on network

distances

� multiWD_disp: for
multilayer networks with

intralayer links weighted

based on dispersal

probabilities

Network metric Description Ecological applications Acronyms

PageRank centrality:
RStudio igraph package

(Csardi et al. 2006) and

MuxViz package (De

Domenico et al. 2015)

This metric was applied to

networks weighted based on cost

attributes. PR centrality for a

node xi in a single-layered

network can be seen as aethe

stationary distribution of a

random walk with additional

random jumps (Halu et al. 2013)

and it is given by: xi ¼
aA

P
j Aij

xj

gj
þ ð1�aA

Þ 1
N 0 where N

is the number of nodes in the

network; Aij are the elements of

the adjacency matrix that are 1

whenever a node j points to node

Developed by Google’s search

engine, PR is a centrality metric

based on a random walk (Brin

andPage 1998; De Domenico

et al. 2015). PR metrics calculate

how well connected a node is

with the rest of the network while

considering the neighbourhood

configuration (Kininmonth et al.

2019). When applied to our

multi-slice network, PR assesses

the role of a node as a connector

between different parts, within

and between layers, throughout a

� PR: for monolayer

networks with links

weighted based on

network distances

� multiPR: for
multilayer networks

with intralayer links

weighted based on

network distances
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[i.e., nodes located in central regions of the network

are assigned higher importance than nodes in the

periphery (marginal nodes)]. In this study, the selected

centrality metrics calculate node-level connectivity

using link attributes resembling costs and weights/

importance (Tiwari et al. 2023). The definitions,

applications, and acronyms used for each centrality

metric are presented in Table 2. The centrality

Table 2 continued

Network metric Description Ecological applications Acronyms

i or are 0 otherwise; gj is given

by gj ¼ max ?ð1; kout
j Þ, being

kout
j Þ the out-degree of node j; aA

is the probability that a random

walker in site j jumps to another

j’s kout
j out-neighbours (Halu

et al. 2013). PR also describes

the transition when a random

walker (i.e., a generic propagule)

jumps to a neighbouring node

with a rate r and then aeteleports

to any other possible node with a

rate r0 (De Domenico et al.

2015). The PR formulations for

multilayer networks are

presented in De Domenico et al.

(2015)

year (node versatility, Costa

et al. 2020)

Network metric Description Ecological applications Acronyms

Closeness centrality: RStudio
igraph package (Csardi et al.

2006) and MuxViz package

(De Domenico et al. 2015)

This metric was applied to

networks weighted based on cost

attributes. Closeness is the

inverse of the sum of the shortest

paths of node I to all other nodes

in the network (Opsahl et al.

2010). Adaptations for multilayer

networks are proposed by De

Domenico et al. (2015), where 0

is assigned if the node is isolated

and 1 if the node is connected to

all other nodes in the network

Closeness assumes that a node

is critical if it is located at a

short distance from other

nodes in the network

(Bianconi 2018), thus having

a favoured position to

receive dispersal flows from

other parts of the system

(Borgatti 2005; Funk et al.

2023)

� closeness: for
monolayer networks with

links weighted based on

network distances

� multiCloseness: for
multilayer networks with

intralayer links weighted

based on network

distances

Network metric Description Ecological applications Acronyms

Kleiberg’s hub centrality
scores (Hub): RStudio igraph
package (Csardi et al. 2006)

and MuxViz package (De

Domenico et al. 2015)

This metric was applied to

networks weighted based on

the importance attribute. Node

importance is defined by the

principal eigenvector of AAT ,

where A is the adjacency

matrix of a graph (Kleinberg

1999). The mathematical

formulation of multilayer Hub

centralities is described in De

Domenico et al. (2015)

This is a measure of how

influential a node is, based on

the principle that nodes with

links pointing to an important

node will generally have other

links pointing to other

important nodes (De Domenico

et al. 2015). Influential habitat

patches are responsible for a

faster propagation of

ecological flows in the network

(Fang and Huang 2013; De

Domenico et al. 2015)

� Hub: for monolayer

networks with links

weighted based on

dispersal probabilities

� multiHub: for
multilayer networks

with intralayer links

weighted based on

dispersal probabilities
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measures Strength or weighted degree, PageRank,

Closeness, and Kleiberg’s Hub centrality were applied

for monolayer networks (monolayer centralities; see

Tiwari et al. 2023) and multilayer networks (multi-

layer centrality) using the R packages MuxViz and

igraph (Csardi et al. 2006; De Domenico et al. 2015).

As an additional step, we calculated the network-level

average of each centrality (centrality profile) to the

dynamic networks with 365 daily thresholds presented

in the previous section ‘‘Building multilayer

networks’’.

Comparing monolayer and multilayer centralities

in capturing taxonomic diversity variations

We first described changes in the taxonomic diversity

of the indicator groups of benthic macroinvertebrates

for each of the time periods. Taxonomic diversity was

defined in terms of:

• a diversity: observed species richness at each site,

for each year separately (RStudio, package vegan

Oksanen 2010). Significant differences in a diver-

sity between years were assessed using the

Kruskal–Wallis test and a post hoc pairwise

comparison using Wilcoxon tests with p-values

adjusted using Bonferroni correction.

• b diversity: pairwise dissimilarities in species

composition among sampling units for a given

region and spatial scale (spatial b diversity)

(Anderson 2006). Significant differences in b
diversity (Jaccard-based dissimilarities) between

years were calculated using an analysis of similar-

ities (ANOSIM) with 999 permutations (RStudio,

packages vegan, and phyloseq Oksanen 2010;

McMurdie and Holmes 2013). Recent studies (e.g.

Heino and Grönroos 2017; Legendre and De

Cáceres 2013) suggested the metric Local Contri-

bution to beta diversity (LCBD) as a way to assign

a b diversity uniqueness score to each assemblage

in the study area. Following this approach, species

abundances were Hellinger-transformed to calcu-

late the LCBD using the abundance-based Jaccard

index (Heino and Grönroos 2017) using the

function ‘‘beta.div’’ of the package adespatial in

RStudio (Dray et al. 2018). This function sum-

marises each site’s b diversity as the average of the

pairwise dissimilarities between the focal site and

all other sites in the study area.

To evaluate the relative importance of the different

centrality metrics in explaining the variations on a
diversity and LCBD, we used variable selection

methods based on Partial Least Squares Regression

(PLSR; Dobbert et al. 2021; Funk et al. 2023). To do

so, we related the sampled sites’ a diversity and LCBD
(response variables) with their corresponding mono-

layer and multilayer centralities (predictors) using

PLSR models (RStudio, packages pls, caret and

mdatools Wehrens and Mevik 2007; Kuhn 2008;

Kucheryavskiy 2020). PLSR is robust when many

variables are considered for the calculations since it

can perform well in front of multicollinearity and non-

normally distributed data (Liu et al. 2018; Harnqvist

et al. 2021). For the analyses, we scaled (normalised

from 0 to 1) and centered all predictors.

We defined the model coefficients by (i) splitting

the entire dataset into calibration (80%) and validation

datasets (20%); (ii) determining the optimal number of

components, as well as their significance, based on a

permutation analysis on the calibration set (randtest

function of the package mdatools in RStudio); (iii)

calibrating the model using the external leave-one-out

cross-validation on the calibration set; (iv) estimating

performance statistics using the external validation

set; and (v) estimating the inherent uncertainties of the

models’ performance based on jackknife variance

estimates such as t-tests, standard error, p-values and

95% confidence intervals of the regression coefficients

(Burnett et al. 2021). Further on, we evaluated the

statistical importance of monolayer and multilayer

centralities based on their Variable Importance in the

Projection (VIP) scores and standardized regression

coefficient (Crone et al. 2019). The VIP scores assess

the contribution of each predictor variable as a

cumulative measure of their influence in the relevant

n number of components of the PLSR (Crone et al.

2019). VIP values [ 1 are statistically important and

were selected to build reduced PLSR models.

Results

Effects of LHC change on the structural properties

of the floodplain landscape

For the time periods 1996, 1999, and 2020, we

calculated the similarities in the intralayer links of

each layer composing the multilayer networks. The
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highest edge/link overlapping of multilayer networks

was found in 1996 (45.67%), followed by 2020

(38.57%), and the lowest in 1999 (36.85%). The

reason for this is that the network before restoration

got fragmented at lower LHC thresholds (see Fig. 4).

Hence, regardless of increasing LHC thresholds,

network topologies of the layers remained similar at

high LHC. On the contrary, the overlapping for the

structural connectivity networks after restoration was

lower, indicating more dynamic changes in landscape

structure caused by the enhancement of LHC frequen-

cies. The overlapping in structural connectivity net-

works decreased by 8.8% short-term after restoration,

concerning before restoration. However, in the long

term, it only decreased by 7.1% (compared to the time

before restoration).

Key landscape areas for maintaining connectivity

at a network level

To quantify changes in node-level connectivity and

identify central areas crucial for maintaining connec-

tivity, we ranked nodes using four centrality metrics:

weighted degree (WD), PageRank and Closeness

centrality, and Hub centrality (Figs. 5, 6, 7). First,

we examined how monolayer centralities changed

along daily LHC thresholds. In Fig. 5, we present the

differences between the average values of monolayer

centralities at each time period. For visualization

reasons, the x-axis starts with a minimum of 200 days

of LHC a year (this includes only nodes highly

connected to the main river channel) to 0 days a year

(including all the nodes present in the river–floodplain

landscape). For monolayer centralities, except for Hub

centrality, the highest values were found short-term

after restoration. The ten days/yr thresholds used to

build the layers in multi-slice networks captured most

of the yearly variability in the centrality metrics

(represented as dashed lines in the plots of Fig. 5).

In the case of centralities working with a cost

measure as a link attribute, significant differences

were found between the rankings obtained from

multilayer networks and those obtained from mono-

layer networks. Regarding centrality metrics working

with a measure of cost as a link attribute, the rankings

of WD, PageRank, and Closeness centrality differed

Fig. 5 Centrality profiles in dynamic networks, where layers

follow daily sequential thresholds on inundation frequencies

[minimum of days of lateral hydrological connectivity (LHC)].

Centralities working with a measure of link cost are a weighted
degree (WD), b PageRank (PR), and c closeness centrality.

Centrality works with dispersal probabilities as link weights are

d weighted degree and e Hub centrality. Vertical dashed lines

correspond to the thresholds used to build the multilayer

networks (every 10 days until reaching a maximum threshold).

The profile of each time period is represented with the colours

yellow (before restoration), grey (short-term after restoration),

and red (long-term after restoration). For all centrality metrics

except Hub centrality, node-level connectivity was the highest

for the time periods after restoration. However, in the long term,

there was a decrease in connectivity
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between monolayer and multilayer types. The spatial

distribution of high scores also changed for multilayer

centralities, which considered LHC frequencies

(Fig. 6). The scores of monolayer WD (WD_cost,

Fig. 6a) highlight the topological characteristics of the

network, assigning high scores at junctions and at the

largest connected component (the biggest fully con-

nected graph cluster). However, the spatial distribu-

tions of multiWD_cost show local connectivity

patterns that resemble those of LHC frequencies

Fig. 6 Spatial distributions of monolayer and multilayer

centrality scores (the time period of 2020) for centrality metrics

working with network distances as link cost attribute: a Strength
or weighted degree, b PageRank and c Closeness centrality.

Monolayer weighted degree and PageRank highlight the

topological network characteristics with high scores at junctions

and the largest connected components, while Multilayer

weighted degree shows local connectivity patterns resembling

inundation frequencies [lateral hydrological connectivity

(LHC)] and Multilayer PageRank assigned a higher importance

to downstream regions. Monolayer closeness centralities

assigned the highest importance to central regions in the

network

Fig. 7 Spatial distributions of monolayer and multilayer

centrality scores (time period of 2020) for centrality metrics

working with dispersal probabilities as link weights: a Strength

or weighted degree and bHub centrality. In the case of weighted

degree, both Monolayer and Multilayer types ranked similar

areas with high importance. Monolayer Hub centrality found

fewer hubs than the Multilayer type
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(Fig. 6a; Fig. S1a of the Supplementary Material). In a

similar way, monolayer PageRank (PR) centrality

assigned high rankings to similar areas (Fig. 6c),

regardless of the time periods (Fig. S2 of the

Supplementary Material). However, for multiPR,

there was a difference in the rankings between the time

period from before restoration and the ones after

restoration (Fig. S2 of the Supplementary Material).

For Closeness centrality (closeness), high scores

derived from monolayer networks were more dis-

tributed more in the central regions of the landscape in

comparison to multiCloseness. However, for

monolayer and multilayer Closeness centralities, the

scores varied slightly between time periods (Fig. S3 of

the Supplementary Material).

As for metrics working with dispersal probabil-

ities as link importance attribute, the rankings of the

centralities WD and Hub centralities also differed

between monolayer and multilayer types. In the case

of WD, both monolayer WD_disp and multilayer

multiWD_disp ranked similar areas with high

importance (Fig. 7a). The differences between time

periods are more marked in multiWD_disp

(Fig. S1b of the Supplementary Material). As for

Hub centralities, monolayer centralities found fewer

hubs than multilayer centralities (Fig. 7b). In the time

periods after restoration, multiHub found more

Hubs in the most downstream regions of the landscape

(Fig. S4 of the Supplementary Material).

Comparing monolayer and multilayer centralities

for habitat connectivity in benthic

macroinvertebrate communities

Overview of changes in a and b diversity of indicator

groups

The number of Oligochaeta and Chironomidae taxa

found over the years, respectively, was 36 and 52 in

1996; 41 and 44 in 1999; and 61 and 72 in 2020. In

1996, the dominant Chironomid taxa were the genera

Tanytarsus and Procladius. By 1999, the dominance

of the genus Polypedium had increased, whereas by

2020, Procladius emerged as the dominant genus.

Meanwhile, for Oligochaetes, the family Tubificidae

remained the most dominant taxon throughout all

years. In 1999, there was an increase in the dominance

of Amphicaeta ledigii, whereas by 2020, there was an

increase in the dominance of the genus Nais.

Mean values of a and b diversity were the highest

after restoration (Table 3). For a diversity, significant

differences were found between all time periods for

Chironomids (H = 33.936, d.f. = 2, p\0:001). As for

Oligochaetes, significant differences were found in a
diversity for all time periods, except between 1999 and

2020 (W = 2030, d.f. = 1, p[ 0:05, Table 3).

Regarding the dissimilarities in community composi-

tion between sites (spatial b diversity), we observed

significant differences between all time periods for

Oligochaetes (ANOSIM: R = 0.160, p ¼ 0:001), as

well as for Chironomids (ANOSIM: R = 0.216,

p ¼ 0:001). For both groups, spatial b diversity

changed following the restoration, where the year

with the highest dissimilarities was 1996. The list of

taxa for each year and visualizations of ANOSIM for b
diversity between years are provided in Table S1 and

Figs. S5, S6 of the Supplementary Material.

Partial least squares regression (PLSR)

The performance statistics of PLSR models are

presented in Table 4 and Table S2 of the Supplemen-

tary Material. When considering all years together, the

PLSR models that combined both monolayer and

multilayer centralities had the highest performance for

predicting the variance in a diversity of Oligochaetes

(variance explained = 23.41%) and LCBD of Chi-

ronomids (variance explained = 19.68%, Table 4).

However, when calculating PLSR models of each

centrality type separately, multilayer centralities were

better predictors of the variance in LCBD of

Oligochaetes (variance explained = 7.83%). In con-

trast, monolayer centralities were better predictors of

the variance in a diversity of Chironomids (variance

explained = 19.20%).

The importance of different centrality metrics for

explaining taxonomic diversity varied between indi-

cator groups. As in our expectations, the most

important predictors for the taxonomic diversity of

Oligochaetes (VIP scores [ 1) were mainly multi-

layer centralities (Figs. 8c, d, 9c, 9d). For both a
diversity and LCBD of Oligochaetes, multiWD_-

cost was the strongest predictor and had the highest

VIP scores (Figs. 8c, 9c; Table S3), while multiHub

and multiPRwere also strong predictors. In contrast,

our expectations were confirmed only for the a
diversity of Chironomids, as the variance in a diversity
was better explained by centralities calculated based

on static representations of the landscape (monolayer
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centralities), closeness being the most important

predictor (Fig. 8a; Table S3 of the Supplementary

Material). In contrast, multilayer centralities had

higher importance for LCBD of Chironomids. In this

case, the variables with the highest scores were

multiHub, multiCloseness, and multiPR

Table 3 Kruskal–Wallis test and Wilcoxon test as a post hoc test with Bonferroni-corrected p-values for observed species richness (a
diversity), as well as the results of Analysis of Similarities (ANOSIM) for b diversity between years

Diversity metric Statistical test

a Diversity: observed

species richness

Chironomidae Oligochaeta

Average ± sd Year

group

1996 4.92 ± 3.2 5.39 ± 2.5

1999 5.86 ± 2.5 9.21 ± 3.2

2020 7.96 ± 3.5 9 ± 4.2

Kruskal–Wallis test Year

group

df H p-value H p-value

1996/

1999/

2020

2 33.936 4.275e-08*** 55.268 9.973e-13***

Wilcoxon (post hoc)

tests

Year

group

df W p-adjust W p-adjust

1996/

1999

1 1534.5 0.0665 863.5 5.276e-10***

1996/

2020

1 1850 5.097e-08*** 2057.5 6.204e-09***

1999/

2020

1 1178 0.007** 2030 1

b Diversity: LCBD Average ± sd Year

group

1996 0.011 ± 0.005 0.01 ±

0.003

1999 0.023 ± 0.009 0.021 ±

0.009

2020 0.013 ± 0.005 0.012 ±

0.004

Analysis of

Similarities

(ANOSIM)

Year

group

df R p-value R p-value

1996/

1999/

2020

2 0.208 0.001*** 0.132 0.001***

1996/

1999

1 0.087 0.012* 0.095 0.014*

1996/

2020

1 0.255 0.001*** 0.149 0.001***

1999/

2020

1 0.265 0.001*** 0.152 0.001***

H Kruskal–Wallis test statistic, W Wilcoxon post hoc test statistic, p-adjust (Wilcoxon tests): Bonferroni-corrected p-value, R
ANOSIM test statistic

Statistical difference: *p� 0:05, **p� 0:01, ***p� 0:001
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(Fig. 9a; Table S3 of the Supplementary Material).

Notably, regression coefficients in Fig. 8b, d indicate

that the centrality metrics had positive relationships

with a diversity in both indicator groups, within the

context of the observed changes over time. The results

of PLSRmodels for each year separately are presented

in Tables S2 and S4 of the Supplementary Material.

Discussion

Our results emphasize the importance of incorporating

pertinent hydrological factors, such as inundation

frequencies, in calculating water-mediated connectiv-

ity, extending beyond only considering the pairwise

distances between habitat patches. For monolayer

networks (network-based representations of static

aquatic corridors), there was an increase in node-level

connectivity after restoration, except for Hub

centrality. Similarly, centrality profiles showed an

increase after restoration, except for Hub centrality.

For centrality profiles, the increase in connectivity was

the highest in the short-term and decreased over the

long-term. Multilayer centralities captured, simulta-

neously, the link additions and the increase in more

dynamic LHC conditions after the restoration. Similar

to centrality profiles, the highest values were found

short-term after restoration, with a slight decrease in

the long-term. Meanwhile, the network-level metric

Edge overlap also supported these findings. For this

metric, the highest dissimilarities between layers were

found in the short-term due to the increase of aquatic

corridors. The observed reduction of connectivity in

the long-term aligns with previous findings docu-

mented by Klasz et al. (2013), Pessenlehner et al.

(2016) and Tockner et al. (1999). These studies point

to the riverbed incision of the Danube channel as the

possible cause of the decrease in LHC and gradual

Fig. 8 Variable Importance in the Projection (VIP) and

standardized regression coefficients (SRC) for the optimal

number of components (ncomp) in full partial least squares

regression (PLSR) models that best explained the variation in

the a diversity of Chironomids and Oligochaetes. VIP scores for

PLSRmodels (orange: VIP[1; grey: VIP\1) for Chironomids

(a) and Oligochaetes (c), as well as the standardized regression

coefficients (grey line) for Chironomidae and Oligochaetes (b,

d) with their 95% confidence intervals based on jackknife

analysis (blue lines). For Chironomids, WD_cost and close-
ness were the most important variables, reflecting the

importance of the spatial arrangement of habitat patches for

this group. For Oligochaetes, multiWD_cost was the only

important variable, which shows the importance of dynamic

changes in LHC. Centrality metrics had positive relationships

with a diversity in both indicator groups
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decoupling of side-channel systems in the Donau-

Auen National Park.

In dynamic systems such as floodplains, assump-

tions of monolayer networks can emphasize key

spatial features such as the arrangement of habitat

patches and a patch’s importance based on its network

position. However, these networks often ignore

potential temporal variation in the presence/absence

of dispersal corridors or habitat patches, which can

bring misleading insights into the overall habitat

patch’s importance (monolayer centrality scores,

Bishop-Taylor et al. 2018). In their work, Bishop-

Taylor et al. (2018) and Funk et al. (2023) evaluated

centralities derived from static network approaches

versus those derived from dynamic networks. Bishop-

Taylor et al. (2018) highlight the value of assessing

connectivity in spatiotemporally variable landscapes

using a more data-intensive dynamic network

approach. The multilayer network framework stands

out by simultaneously considering all layers and their

interconnected structures when calculating centrali-

ties, which enables it to emerge as a powerful

alternative (De Domenico et al. 2015; Bianconi

2018). In their work, De Domenico et al. (2015)

introduced the mathematical formulations of central-

ity metrics, including those utilized in this study,

adapted to multilayer networks. They found that

multilayer centralities can avoid the limitations of

approaches that aggregate the information into a single

layer or of dynamic approaches that compute central-

ities individually for each layer of a dynamic network

[e.g., limitations may include neglecting the intercon-

nections between replica nodes, thus overestimating

the importance of the most marginal nodes (nodes in

the periphery)]. The capability of accounting for

interconnected structures between layers is crucial for

evaluating the importance of nodes within systems

characterized by complex relationships (De Domenico

Fig. 9 Variable Importance in the Projection (VIP) and

standardized regression coefficients for the optimal number of

components (ncomp) in full partial least squares regression

(PLSR) models that best explained the variation in the Local

Contributions to Beta Diversity (LCBD) of Chironomids and

Oligochaetes. VIP scores for PLSR models (orange: VIP[ 1;

grey: VIP\1) for Chironomids (a) and Oligochaetes (c), as well
as the standardized regression coefficients (grey line) for

Chironomidae and Oligochaetes (b, d) with their 95%

confidence intervals based on jackknife analysis (blue lines).

For Chironomids and Oligochaetes, multilayer centralities had

higher importance, which shows the importance of dynamic

changes in lateral hydrological connectivity (LHC) for LCBD.

For Chironomids, the variables with the highest scores were

multiHub, multiCloseness, and closeness, while for
Oligochaetes, the most important variables were multiWD_-
cost, multiHub, and multiPR
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et al. 2015), as seen in the case of evaluating the

importance of habitat patches in dynamic landscapes.

Thus, multilayer centralities are suggested to be good

descriptors of dynamic aspects of empirical network

topologies, which are inherently multilayer (De

Domenico et al. 2015).

Temporal changes in habitat connectivity

and benthic macroinvertebrate community

For both indicator groups, a and b diversity changed

significantly between time periods. The year with the

highest dissimilarity ranks in spatial b diversity was

1996. A possible explanation for these high dissimi-

larity ranks is that, before restoration, less connected

communities had greater variability in species com-

position. By re-establishing more dynamic LHC

conditions, the side-channel reconnection measures

increased the importance of stochastic ecological

processes in localised areas of the network, thus

reducing dispersal limitation. Restoration measures

could also affect both stochastic and deterministic

processes that shape Benthic Macroinvertebrate

assemblages (Larsen et al. 2019). For this same study

area, Funk et al. (2023) found that node-level directed

connectivity affects sediment transport and composi-

tion, which is a key determinant of habitat hetero-

geneity for benthic macroinvertebrates (Johnson 1984;

de Haas et al. 2005). However, it is important to notice

that habitat heterogeneity is also shaped by other

factors such as riparian vegetation, patches of macro-

phytes, topography, or other autogenic processes

(Junk et al. 1989; Tockner et al. 2000; Chaparro et al.

2018). In the short-term, restoration might have

influenced both deterministic and stochastic factors,

creating heterogeneous young communities. How-

ever, in the long-term, more mature communities

might be shaped predominantly by deterministic

processes (e.g., habitat filtering and resource require-

ments) (Larsen et al. 2019). Additionally, the ongoing

river bed incision and associated long-term decrease in

connectivity (decrease in the duration and frequency

of the inflows into the side-arms) may simultaneously

increase the prevalence of species sorting. This

complex interplay highlights the necessity for includ-

ing detailed environmental data to better understand

the dynamics at play.

For Chironomids, both monolayer and multilayer

centralities were good predictors of the variance in a

diversity and LCBD, respectively. The metrics

closeness and multiCloseness had the high-

est importance for a diversity and LCBD of Chirono-

mids. Monolayers and multilayers closeness

centralities depicted different aspects of habitat con-

nectivity. According to closeness, nodes of high

importance are located in the central regions of the

network (Bianconi 2018), where they are at shorter

network distances to other nodes. Thus, mul-

tiCloseness captures how this importance

changes depending on the presence/absence of aquatic

corridors, although is less influenced by LHC condi-

tions compared to other metrics. Both closeness

centralities are significantly related to Chironomids’

taxonomic diversity, which indicates that the effect of

spatial patterns, like the spatial arrangement of habitat

patches, is more influential to their community

assemblages than other connectivity properties

(Cáceres and Soluk 2002; Armitage et al. 2012). For

this group, the variance in LCBD was better explained

by both types of connectivity predictors than the

variance of a diversity. Chironomids present varia-

tions in dispersal modes and abilities depending on

their life cycle (Milošević et al. 2022). Chironomidae

larval dispersal occurs passively, driven by water

currents, while the imago exhibits limited flying

ability to disperse overland (Davies 1976; Armitage

et al. 2012). Therefore, adult dispersal may enable

Chironomids to colonise habitat patches, with less

reliance on aquatic corridors and more on the prox-

imity to other neighbouring patches.

Our findings show that the property of landscape

resistance, captured by multilayer centralities mul-

tiWD_cost and multiPR, was the most influential

property for Oligochaeta (strict aquatic dispersers)

assemblages. Both multilayer centralities are based on

notions of landscape resistance (cost link attribute).

The multiWD_cost centrality calculated the

strength of the connections of a habitat patch along

dynamic LHC conditions, while the other, multiPR,

relied on random walks. The notable significance of

both multiWD_cost and multiPR in terms of

variable importance can be attributed to the greater

dispersal limitation observed in Oligochaetes com-

pared to Chironomids (Petsch et al. 2017; Armendáriz

et al. 2022). Oligochaetes are strict aquatic dispersers

with a passive dispersal mode, their life cycle is

mainly restricted to sediments (Martin et al. 2008;

Petsch et al. 2017). For this indicator group, metrics
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that included dynamic LHC conditions were expected

to be more influential (Zilli and Marchese 2011).

While, overall, multilayer centralities explained most

of the variance in taxonomic diversities, the variance

in LCBD was explained to a lesser extent than the one

of Chironomids. Schmera et al. (2018) found that the

variance in non-flying benthic macroinvertebrates

taxa was explained to a lesser extent by environmental

and spatial predictors than that of flying taxa. This

might be explained by (i) the fact that distinct taxa

might respond differently to isolation effects; (ii) the

timing of sampling can impact the relative influence of

environmental and spatial factors; (iii) the scale

dependency in the spatial distribution of sampling

sites or incomplete detection; (iv) individual systems

might exhibit substantial variability in the relative

significance of environmental or spatial predictors

(Göthe et al. 2013; Tonkin et al. 2016; Schmera et al.

2018).

In our approach, by focusing exclusively on flow-

mediated passive downstream dispersal events, we

ensured that the connectivity changes due to restora-

tion are appropriately captured.We exemplified with a

scenario the applications of monolayer and multilayer

network approaches, reducing the complexity of

dispersal processes for Chironomids and Oligochaetes

to downstream movement. However, we acknowledge

that the assumptions in our scenario model limit the

representation of adult Chironomid dispersal capabil-

ities and the upstream dispersal of Oligochaetes.

While this approach simplifies our model, it remains

an area for future research to incorporate different

dispersal modes and abilities to gain a more complete

knowledge of the habitat connectivity of benthic

macroinvertebrates. Further steps can include inves-

tigating the performance of different combinations of

upstream/downstream kernel parameters to represent

different modes and abilities to reflect taxon-specific

dispersal within the water column (see Borthagaray

et al. 2015). Additionally, while the methodological

focus of our paper emphasizes the novel application of

multilayer networks to assess habitat connectivity in

floodplain ecosystems, we also acknowledge that it is

crucial to include local environmental factors and have

a designated control group for assessing the outcomes

of restoration on benthic macroinvertebrates (Larsen

et al. 2019; Al-Zankana et al. 2020). Therefore, we

interpret our findings within the context of observed

changes over time in our model scenario rather than

attributing them solely to restoration activities.

Nonetheless, in this study area, the immediate effects

of restoration in enhancing dynamic LHC conditions

in the short-term are evident in Schiemer and Reck-

endorfer (2004), Reckendorfer and Steel (2004),

Schiemer et al. (2007), and Reckendorfer et al.

(2006). Considering changes in deterministic and

stochastic factors and their effect in shaping various

facets of benthic macroinvertebrates biodiversity (e.g.,

taxonomic, functional, or phylogenetic diversity) will

help in understanding how restoration affects both

assembly mechanisms and the spatiotemporal scales

on which these mechanisms operate. This is appro-

priate for testing hypotheses referring to community

assembly theory and ecological succession (Paillex

et al. 2013; Larsen and Ormerod 2014; Larsen et al.

2019).

Applications for management

Restoration projects that seek to maintain and enhance

habitat connectivity to support biodiversity are crucial

for endangered ecosystems such as floodplains (Hein

et al. 2016). Yet, for this case study, the planning of

restoration projects must include long-term solutions

to the current connectivity loss trends that result from

the ongoing bed degradation of the main river channel

(Reckendorfer et al. 2006; Klasz et al. 2013). Conse-

quently, the effective conservation and restoration of

natural areas requires an integrated view of how biota

interact with their habitats (Timóteo et al. 2018).

The toolset used to model connectivity changes

induced by restoration measures, designed to restore

connectivity, should recognise the dynamic nature of

floodplain landscapes. In this study, we recommend

the use of multilayer network analyses since it brings

the potential to prioritize restoration efforts and

monitor their effectiveness over time. This framework

represents an appropriate tool for assessing connec-

tivity in highly dynamic ecosystems like floodplains,

as it integrates both spatial and temporal dimensions

into connectivity analyses (Pilosof et al. 2017;

Hutchinson et al. 2019; Costa et al. 2020), thereby

providing a more accurate measure of the effects of

restoration on reducing dispersal limitations for

aquatic biodiversity.

The contributions of multilayer network toolsets

are expanding with increased availability of freely

accessible resources (e.g. Dormann et al. 2009; De
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Domenico et al. 2015; Farage et al. 2021. Previous

works by De Domenico et al. (2013, 2015) introduced

a mathematical framework to compute multilayer

centralities using a tensorial approach and provided an

open-source tool for connectivity analyses using

multilayer networks (R package MuxViz De Dome-

nico et al. 2015). This has influenced recent method-

ological developments in ecology that go beyond

monolayer centralities (Timóteo et al. 2018; Finn

et al. 2019; Costa et al. 2020; Farage et al. 2021),

which offers practical applications for planning man-

agement measures.

Evaluating restoration measures is a crucial aspect

of management. Connectivity factors play an impor-

tant role but can be overshadowed by the significance

of local environmental factors (Schmera et al. 2018;

Saigo and Marchese 2021; Tiwari et al. 2024).

Therefore, to understand the potential effects of

changes in water-mediated connectivity in flood-

plains, it is essential to differentiate the roles of

environmental and connectivity factors, as well as

their combination and cascaded effects (Funk et al.

2023). For future research directions, we suggest that

future studies follow the important guidelines pro-

vided by Al-Zankana et al. (2020) in order to assess

restoration outcomes using responses from benthic

macroinvertebrates: (i) employing a Before–After-

Control-Impact (BACI) study design; (ii) accounting

for seasonal or annual variations that could affect

Benthic Macroinvertebrate community composition;

(iii) conducting multi-habitat sampling of the Benthic

Macroinvertebrate community; (iv) include diversity

indices that go beyond the most commonly used

taxonomic diversity indices, such as unbiased estima-

tors (Hurlbert 1971), ecosystem functional indicators

(Reckendorfer et al. 2006; Neale and Moffett 2016;

Funk et al. 2017), and functional diversity indices

(Coccia et al. 2021; Magneville et al. 2022).

Conclusions

Multilayer networks provide a novel and promising

approach for integrating dynamic changes in LHC

conditions to assess floodplain ecosystems’ habitat

connectivity. In this study, we present the first

application of multilayer networks under a flow-

mediated passive dispersal scenario to estimate

changes in habitat connectivity in floodplain

ecosystems. The tools used in this study were appro-

priate for assessing the changes in aquatic habitat

connectivity for the selected groups of benthic

macroinvertebrates, following floodplain restoration

measures. Our centrality analysis and edge overlap

metric indicated a short-term increase in aquatic

habitat connectivity after restoration, which decreased

slightly in the long-term. Multilayer centralities,

which incorporated LHC frequencies, outperformed

monolayer centralities in explaining changes in taxo-

nomic diversity, particularly for Oligochaetes (a
diversity and LCBD) and Chironomids (LCBD).

Post-restoration, the taxonomic diversity of both

groups increased, with multilayer centralities proving

most significant for Oligochaetes. For Chironomids,

both monolayer and multilayer centralities, which

capture the spatial arrangement of habitat patches

within the network, were the most influential. In future

steps, adopting a Before–After-Control-Impact

(BACI) study design, as well as including both

environmental and other deterministic and stochastic

factors that shape different facets of benthic macroin-

vertebrates diversity is recommended to gain insights

into how restoration impacted their community

assemblages.
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floodplain restoration: predicting species richness and trait

responses to the restoration of hydrological connectivity.

J Appl Ecol 46(1):250–258
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