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A B S T R A C T   

Ambient seismic noise, particularly useful in urban areas, contains valuable information on seismic wave 
attenuation and the related shear-wave quality factor (QS) in the near-surface layers. Although the application of 
ambient seismic noise for attenuation studies is promising, more development and testing are necessary before it 
can be adopted for standard in situ analysis. In this paper, a development of the approach suggested in Parolai 
(2014) [58] is proposed and tested to improve the robustness of the results. In particular, the Simultaneous 
Algebraic Reconstruction Technique (SART) (Andersen and Kak, 1984) [5] is used for implementing an atten-
uation positivity constraint to the solutions – to non-get negative QS values – avoiding the preliminary testing of 
parameters required in the original procedure. Tests carried out at sites, where previous QS values estimated with 
the approach proposed by Parolai (2014) [58] were available, show similar results to the former algorithm. 
Furthermore, for the used data sets, the attenuation positivity constraint was shown not to be mandatory for 
gaining solutions with a physical meaning.   

1. Introduction 

The frequency-dependent changes in amplitude and duration of 
seismic waves while propagating in the uppermost portion of the crust, 
are caused by local morphological, geological, and geotechnical fea-
tures, which together are generally defined as the site response. They are 
mainly determined by the impedance contrast between geological units. 
Although seismic amplification depends on several parameters [7], the 
shear-wave velocity (VS) profile and the fundamental resonance fre-
quency of a site are the most common proxies used for characterizing it 
in terms of site response. However, when a full characterization of the 
site response is required, detailed information on the mechanical char-
acteristics of the material below a site must be added, including seismic 
attenuation. This is described by the quality factor Q, a quantity related 
to the relative energy loss per wavelength and expressed as 2π times the 
ratio of the energy stored to the energy lost in the material per cycle (e. 
g., Ref. [30]). 

Leaving aside the contribution of the reduction of energy intensity in 
the wavefield with increasing distance (i.e., geometrical spreading) 
without loss of generality, [74] indicated the effective total Q (Qtot) as 
the sum of anelastic attenuation and scattering [19]: 

1
Qtot

=
1
Qi

+
1

Qsc
(1)  

where Qtot represents the total (observed) quality factor, Qi is the 
intrinsic (or anelastic) quality factor, and Qsc is the scattering quality 
factor, a parameter introduced by Ref. [2] to make scattering-related 
and anelastic energy losses comparable to one another. The anelastic 
effect represents the transformation of elastic energy into heat or other 
forms of energy due to material absorption or friction. The scattering 
effect is related to the interaction of the wave field with the material 
heterogeneities. 

In a soft sedimentary cover, the Q factor – which here can indicate 
either the compressional-wave quality factor (QP) or the shear-wave 
quality factor (QS) depending on the context – counteracts the effect 
of amplification due to impedance variations. Thus, Q, together with VS, 
is a relevant parameter necessary to accurately estimate the site 
response through numerical simulations (e.g., Ref. [57]). The estimation 
of Q from empirical data, however, is not simple. 

Some studies focusing on the estimation of Qtot or Qi in shallow 
geological layers took advantage of the availability of data recorded in 
vertical arrays of sensors where earthquake recordings were collected (e. 
g., Refs. [10,11,24,59,67]). [21] developed the peak-frequency method 
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for calculating Qi from direct waves of microseismic events. The method 
was improved and benchmarked by Refs. [75,76] and used by Ref. [20]. 
Other works have proposed estimating Qtot or Qi by considering active 
seismic source recordings [25,31,73,80,81]. Among those studies, at-
tempts were made to exploit the amplitude versus offset analysis (e.g., 
Ref. [85]), but also some works involved combining amplitude decay, 
spectral ratios, Wiener filters, and artificial neural networks (Ref. [83]). 
In addition, [17] carried out seismic interferometry by cross-correlation 
in a borehole. 

The passive technique based on ambient seismic noise analysis can 
also be used to assess the seismic response of a site and allows charac-
terization with a high spatial coverage even of areas with moderate or 
low seismicity. While this technique has been widely and successfully 
adopted for retrieving VS profiles (e.g. Refs. [1,8,9,14,23,43,56,61,68]), 
less attention was paid to its potential in providing an estimate of the Q 
factor below a site. Attempts to estimate the attenuation coefficients 
from ambient seismic noise have been carried out at both regional (e.g., 
Refs. [4,44–48,51,54,65,66,70,77]) and local scales (e.g., Ref. [3]). In 
particular, by focusing on QS at a local scale, [58] proposed a scheme for 
the attenuation factor inversion aimed at retrieving the 1D QS structure 
below a site from ambient seismic noise once the VS profile from the 
inversion of dispersion curves was known independently. The inversion 
was based on a least-squares algorithm with an attenuation positivity 
constraint (e.g., Ref. [50]). The results provided from this method for the 
shallowest geological layers are valuable, as was demonstrated for test 
sites where independent QS estimates were available (e.g., Refs. [12,15, 
58]). However, the procedure requires a careful trial and error testing of 
the damping factors to obtain robust solutions. 

In this paper, the approach proposed in Ref. [58] was modified by 
exploring the potential of the Simultaneous Algebraic Reconstruction 
Technique (SART) to avoid the preliminary analysis required by the 
least-squares algorithm. First, a description of the SART algorithm and 
the way it is used for the case at hand is provided. Second, two test sites 
analyzed in previous publications and here adopted for refining the re-
sults gained with SART are considered, and a summary of the analyses 
conducted is given. At both the considered test sites, the QS obtained in 
this study is compared with the QS calculated with the procedure pro-
posed in Ref. [58], and their effect on the expected ground motion at the 
surface is estimated by calculating the deconvolved wave field from 
synthetic seismograms of vertically propagating S-waves. Suggestions 
regarding the choice of the inversion parameters (i.e., the number of 
iterations and the relaxation parameter) for estimating QS using SART 
are also presented. Finally, the inversion procedure is applied to data 
collected at the Piana di Toppo (PITOP) test site, northeastern Italy, 
where independent geophysical measurements were carried out. 

2. Method 

The estimation of the QS factor was carried out in two steps that 
follow the approach described in Ref. [58] and are briefly summarized 
here. 

In the first step, the S-wave velocity profile was calculated by the 
inversion of the Rayleigh-wave phase velocity dispersion curve, and the 
attenuation coefficients were estimated using a modified version of the 
Extended Spatial AutoCorrelation (ESAC) approach [55,61]. Using this 
method, the frequency-dependent Rayleigh-wave phase velocity is 
estimated by the frequency domain fit of the theoretical Bessel functions 
to the empirical correlation coefficients [1]. In order to consider the 
effect of inelasticity, [66] introduced adjustments to the equation orig-
inally proposed for the propagation of the waves in an elastic medium. 
Therefore, in this study, the phase velocity and the frequency-dependent 
attenuation factor at a local scale are estimated via a grid search pro-
cedure [58] by using the modified equation presented in Ref. [66]. 
Moreover, an inversion only for the dispersion curve of phase velocity 
was carried out to obtain the Vs profile. 

In the second step, QS was estimated from the inversion of the 

attenuation coefficients by constraining VS to the values obtained in the 
first step. While the Rayleigh wave attenuation factor of the input data is 
frequency-dependent, the QS of the layered model is assumed frequency- 
independent. The attenuation coefficients of Rayleigh waves are related 
to QP and QS of a layered model by (Ref. [6]): 

α(ω)= ω
2c(ω)2

[
∑M

i=1
vPi

δc(ω)

δvPi
Q− 1

Pi +
∑M

i=1
vSi

δc(ω)

δvSi
Q− 1

Si

]

(2)  

where α(ω) is the Rayleigh wave attenuation factor dependent on fre-
quency, ω is the angular frequency, c(ω) represents the phase velocity, 
and M is the total number of layers of the subsoil model. VPi and VSi are 
the compressional- and the shear-wave velocities of the ith layer, 
respectively. QPi

(− 1) and QSi
(− 1) indicate the inverse of the compressional- 

wave quality factor of the ith layer and the inverse of the shear-wave 
quality factor of the ith layer, respectively. 

If VS/VP is less than 0.45, the analyses can be performed by inverting 
only QS [81] and the formula simplifies to: 

α(ω)= ω
2c(ω)2

[
∑M

i=1
vSi

δc(ω)

δvSi
Q− 1

Si

]

(3) 

When several frequencies are considered during the quality factor 
inversion process, a system of linear equations with the attenuation 
coefficients as data and the Q values as unknowns can be solved. In this 
paper, the estimation of QS was carried out with SART. In particular, Qi 
was estimated assuming that the contribution of Qsc was negligible, since 
the interstation distances of the microarray are smaller than the wave-
lengths of seismic waves. 

2.1. Simultaneous Algebraic Reconstruction Technique (SART) 

SART was proposed by Ref. [5] as a superior implementation of the 
Algebraic Reconstruction Technique (ART). 

ART was first employed in the 1970s by Ref. [29] for X-ray 
photography in radiology and electron microscopy, with the aim of 
solving the problem of the direct 3D reconstruction of an object. 
Weighted sums of appropriate reconstruction elements are combined in 
ART with the respective projection data in an iterative way [28,29]. 

It soon emerged that ART presented salt and pepper noise problems 
in the reconstructions. For this reason, [27] proposed an alternative 
computer implementation called Simultaneous Iterative Reconstruction 
Techniques (SIRT). SIRT was designed to provide the correct re-
constructions of 3D objects in electron microscopy [27]. Although 
improving the resulting image resolution with respect to ART, the time 
necessary for gaining the convergence and, consequently, for image 
reconstruction is generally longer than with ART [41]. 

When SART was introduced in the 1980s, it appeared to bring 
together the best features of both ART and SIRT techniques, which are 
the rapid convergence of the first and the higher resolution of the sec-
ond. SART also succeeds in suppressing noise, which is the main quality 
of SIRT. This means that the reconstructions are smoother than those 
achieved using ART, since the contrasting and constant unknown update 
is removed at every new equation [41]. [5] highlighted a further 
advantage. Based on weighted sums of rows and columns of the input 
data kernel matrix, SART applies at the same time to a single unknown 
the average of the corrections generated by all rows in one projection. 
This differs from ART, which updates the unknown values sequentially 
row-by-row. 

As SART is based on weighted averages, it implies that the results 
depend strictly on the weight that each value has inside the data kernel 
matrix. Moreover, correcting each unknown for all rows at once means a 
faster convergence than for ART. Furthermore, SART can also be used 
for solving linear problems by constraining the space of the solutions. 
The high resolution, together with the possibility of implementing 
constraints on the solution of a linear problem easily, seems to make 
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SART a suitable algorithm for estimating the quality factor following the 
approach of [58]. 

Let us consider a linear inverse problem expressed in matrix-vector 
notation: 

Af = d (4)  

where A is the N X M data kernel matrix, f is a vector containing the M 
unknown model parameters, and d represents the data vector of N 
measurements [50]. This paper computes 1/Q. Considering that the Q 
factor cannot be negative, but in some layers the calculated 1/Q values 
could be thus estimated, when analyzing experimental data it is neces-
sary that an additional constraint 1/Q > 0 is fixed as a condition on the 
smoothing [42]. Alternatively, more generally concerning 1/Q, it could 
be necessary to fit the data within some confidence bound (see Refs. [71, 
72]) as: 

d − η⩽Af ⩽d + η (5)  

where ɳ is a vector containing predetermined confidence intervals. In 
the present study, an additional constraint 1/Q > 0 (in this case, in 
solving equation (3)), rather than confidence intervals was used. 

When considering equation (3), equation (4) becomes the following: 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ω1

2c(ω1)
2vS1

δc(ω1)

δvS1
...

ω1

2c(ω1)
2vSM

δc(ω1)

δvSM
. .

. .

. .

ωN

2c(ωN)
2vS1

δc(ωN)

δvS1
...

ωN

2c(ωN)
2vSM

δc(ωN)

δvSM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q− 1
S1

.

.

.

Q− 1
SM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

α(ω1)

.

.

.

α(ωN)

⎤

⎥
⎥
⎥
⎥
⎦

(6)  

where the data kernel matrix A considers the contribution of VS to the 
attenuation factors, M is the number of layers of the selected model, and 
N stands for the number of attenuation factors adopted, which is equal to 
a sufficient number of frequencies selected from the original dataset that 
is able to define the trend in the curve of the attenuation factors. 

The solution is calculated by SART as follows: 

f (k+1)
j = f (k)j + λ

∑N
i=1

[
pi −

∑M

j=1
Aij f

(k)
j∑M

j=1
Aij

Aij

]

∑N
i=1Aij

(7)  

where fj(k+1) is the new estimate of the inverse of the quality factor Qsj
− 1, 

fj(k) is the current estimate of the inverse of the quality factor Qsj
− 1, and k 

stands for the kth SART iteration. The index i is the row number and 
represents the data considered, which are linked to the frequencies 
selected from the original dataset for defining the curve of the attenu-
ation factors. The index j is the column number and stands for the un-
knowns, which are the number of layers of the subsoil model considered 

for the site analyzed. A is the matrix of partial derivatives of VS. 
∑N

i=1
Aijf (k)j 

returns the retrieved attenuation factor, pi is the observed attenuation 
factor, and λ is the relaxation parameter, which helps in mitigating the 
noise. 

[5] commented that one iteration of SART is sufficient to generate a 
good reconstruction in terms of quality and numerical accuracy. 
Furthermore, they pointed out that the under-relaxation (i.e., λ < 1) 
proposed for the ART technique by some authors [28,34–37,69] 
increased the number of iterations for a solution to converge and 
decreased noise in the solution. 

In this work, it was investigated as to whether, with a certain com-
bination of SART parameters, including λ, an acceptable balance be-
tween the number of iterations and the quality of the reconstructions is 
achieved by means of reliability tests. 

3. Reliability tests 

In the QS inversion process with SART the influence of varying λ, the 
number of SART iterations, and the attenuation positivity constraint on 
the solution was tested. To estimate the range of parameters that allow 
obtaining robust solutions, the inversion was carried out at test sites 
where the quality factor was known either from independent measure-
ments or from previous ambient seismic noise inversions. 

The first test site considered was at Telegrafenberg, located at the 
Alfred Einstein Science Park in Potsdam, Germany. The data set is the 
one used in Refs. [12,15] and is composed of ambient seismic noise 
recordings from a sparse array geometry. 18 stations equipped with a 
GFZ-WISE system – namely, low-cost digitizers generating wireless 
mesh networks [22,62] – and 4.5 Hz sensors recorded simultaneously 
for more than 1 h at 100 samples/sec. Minimum and maximum inter-
station distances were 4.0 m and 45.0 m, respectively. Only the vertical 
component of the recording of each station was analyzed and it was 
divided into 30-s non-overlapping windows. Each signal window was 
tapered for 5% of its length at both ends by means of a cosine function to 
minimize leakage problems. After that, the spatial correlation co-
efficients were calculated in the same way as in Ref. [58]. The frequency 
band considered is 2.51–9.45 Hz. More information on data acquisition 
and analyses can be found in Refs. [12,15]. 

The second test site is the village of Tito, in the Saint Loja Plain near 
the town of Potenza (Basilicata region), southern Italy. In this case, the 
data consist of ambient seismic noise recordings from a non-regular 
array configuration. 11 stations equipped with a 24-bit digitizer con-
nected to a Mark L-4C 3D 1Hz sensor and a Global Positioning System 
(GPS) recorded simultaneously for more than 1 h at 500 samples/sec. 
Minimum and maximum interstation distances were 5.1 m and 66.8 m, 
respectively. Only the vertical component of the recording of each sta-
tion was analyzed and it was divided into 60-s non-overlapping win-
dows. Each signal window was tapered for 5% of its length at both ends 
by means of a cosine function to minimize leakage. The frequency range 
used is 3.25–10.64 Hz. More information on this second data set can be 
found in Ref. [60] – specifically, their array 1 – and in Ref. [58]. 

The VS model of Telegrafenberg consists of four layers to a depth of 
47 m [12]. The model for the Tito test site provides information on the 
velocity structure down to 35 m depth and is subdivided into five layers 
[58]. Both [12,58] calculated the 1D VS profile following the inversion 
adopted in Ref. [61] using the modified genetic algorithm by Ref. [82]. 
Then, they retrieved the intrinsic QS following the original procedure 
proposed by Ref. [58]. Due to a VS/VP ratio less than 0.45, the inversion 
process in Ref. [12] and in Ref. [58] was calculated using Eq. (3). VS and 
QS values retrieved by Ref. [12] and by Ref. [58], respectively, are 
shown in Table 1. At the Tito test site, [53] estimated a damping of less 

Table 1 
QS values versus depth for (a) the Telegrafenberg test site by Ref. [12] and (b) 
the Tito test site by Ref. [58].  

(a) Telegrafenberg test site. 

Layer Thickness [m] VS [m/s]a QS
b 

1 7 175 15.0 
2 9 235 14.9 
3 21 301 16.4 
4 10 310 76.2 

(b) Tito test site. 

Layer Thickness [m] VS [m/s]a QS
b 

1 6.9 202 9.8 
2 8.5 190 11.2 
3 5.4 212 50.1 
4 10.4 310 13.9 
5  324 7.7  

a Shear-wave velocity. 
b Shear-wave quality factor. 
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than 5% [i.e., considering a QS larger than 10 in the relation damping =
1/(2QS)] between about 1 and 2.5 Hz by using a non-parametric analysis 
of a M = 2.8 earthquake occurred in Southern Apennines (Italy). Further 
geophysical QS values at the Tito test site were obtained from down-hole 
measurements by Ref. [60], who analyzed S-waves at intervals of 1 m 
down to 30-m depth generated by a 7-kg sledgehammer hitting hori-
zontally a steel plate at the surface. The acquisition system consisted of a 
16-bit digitizer and one 10-Hz down-hole geophone recording at 4000 
samples/sec. The analyses were performed by Ref. [60] adopting the 
spectral amplitude decay analysis and the spectral ratio technique [26]. 
With the former method, [60] estimated a QS factor equal to 7 at 30 Hz, 
around 7.5–15 between 35 and 45 Hz, and about 20–30 between 50 and 
80 Hz. The latter method provided QS values in the range 10–20 – 
thereby, consistent with the QS retrieved using the spectral amplitude 
decay analysis – by fitting the frequency bands 15–40 Hz and 15–50 Hz 
of the down-hole data collected from between 5 and 25 m depth. In this 
work, tests at both sites were carried out using Eq. (3) to compare the 
parameter QS estimated with the original algorithm and the QS retrieved 
using SART. The QS profiles of [12,58] for the Telegrafenberg and Tito 
test sites, respectively, are regarded as the references, since they are 
published values gained using the approach of [58]. Furthermore, in the 
case of the Tito test site, the QS values in Ref. [58] were also compared 
with the results of other geophysical methods. 

The starting models for the 1D QS inversion were that of [12] for the 
Telegrafenberg test site and of [58] for the Tito test site, respectively, 
and are shown in Table 1. The dispersion curves of [12,58] were used as 
input data, as well. 

In the first step of the testing procedure, the model resolution matrix 
was calculated, in order to estimate the appropriateness of the model 
parametrization and to decide the number of layers to be considered in 
the analysis. Indeed, the model resolution matrix provides information 
on whether and how the model parameters can be solved [50]. The 
nearer the resolution matrix gets to the identity matrix, the higher the 
quality of the inversion [40]. The over-determined problem was 
resolved using the Singular Value Decomposition (SVD) [79] to estimate 
the model resolution matrix. The data kernel matrix (or Jacobian ma-
trix), which is the matrix of partial derivatives of velocities, was also 
considered for a first validation of the parametrization and the quality of 
the data. 

In order to estimate the influence of the choice of the inversion pa-
rameters on the solution and to define criteria for the final inversion of 
the data, the inversion was carried out several times varying the λ value 
within the range 0.1–2.0 with a step of 0.1, while a maximum number of 
200 iterations was tested. 

The Root Mean Square (RMS) of the difference between the observed 
and calculated attenuation coefficients (i.e., the residuals) was esti-
mated at each iteration and for each value of λ. The same was done for 
the perturbation of the solution (P) at each SART iteration with respect 
to the starting solution, calculated according to the following formula 
[84]: 

P=
1
M

∑M

j=1

(
fj(kth) − fj(starting value)

)2
(8)  

where M stands for the total number of layers of the subsoil model 
considered for the QS inversion, fj(k

th) represents fj at the kth SART iter-
ation, and fj(starting value) is the starting fj at the first SART iteration. The 
optimal number of iterations was defined as that leading to the best 
compromise between the RMS of the residuals and P. 

Then, the effect of the attenuation positivity constraint on the solu-
tions, and if this parameter was mandatory for a non-negative QS esti-
mation, was investigated. Two diverse attenuation positivity constraints 
were assumed for the different tests. In one instance, the attenuation 
positivity constraint forced the solution at each iteration to re-set 1/QS 
equal to 0 (i.e., a condition of perfect elasticity) in case it gave a negative 
result. Alternatively, the solution was forced to be equal to 1/5, again in 

case it resulted negative or greater than 1/5, restricting the space of the 
solution. This is because no values lower than 5 were expected either at 
the Telegrafenberg [12] or Tito [58] test sites. 

For each combination of parameters, the estimated attenuation fac-
tors were then compared with the observed attenuation factors already 
obtained at these sites. The starting fj value was set to 0. 

3.1. Telegrafenberg test site 

Fig. 1a shows that the model resolution matrix calculated with the 
same 1D VS set up model of [12] can be predicted well in the first three 
layers, similarly to what observed from the Jacobian matrix (see 
Ref. [12]). In fact, it is diagonal for the first three layers, thus indicating 
a reliable prediction of the QS value. For the fourth layer, on the con-
trary, the resolution is poor, so that this last layer cannot be well pre-
dicted. This information will be considered when comparing the results 
of the inversions. 

Fig. 2 depicts the retrieved attenuation factors at each of the 200 
SART iterations and compares them with the observed attenuation fac-
tors of [12], first for λ < 1, and then for λ > 1. On the left (Fig. 2a, λ < 1) 
the retrieved attenuation factor converges gradually towards the 
observed one. This is consistent with the expectation that lower values of 
λ lead to a slow convergence versus the minimum of the solution. Fig. 2b 
(right panel, λ > 1) shows a non-regular trend in the convergence. A λ 
equal to 1.8 guarantees almost an immediate adjustment of the solution, 
but this results in its overall instability. In general, inversions carried out 
with λ larger than 1.0 resulted in increasingly unstable solutions. 

In Fig. 3, the RMS (graph on the left) and the perturbation (P) (graph 
in the middle) of a solution with an initial fj value equal to 0 and no 
attenuation positivity constraint are represented for λ values in the range 
0.1–2.0. A focus on a maximum of 50 SART iterations is provided, since 
beyond this number no appreciable variations were encountered. For λ 
increasing from 0.1 to 1, the number of SART iterations required for the 
RMS to stabilize are progressively lower; vice versa for λ increasing from 
1.0 to 2.0, with 2.0 being an unacceptable value. However, a slow 
convergence is often preferable [33]. On the other hand, the lowest P 
values are gained for less than 20 SART iterations and λ < 1. The area 
that falls within the yellow dashed line represents a good compromise 
between the best RMS and P values. Within this area, no negative QS 
values were obtained. In addition, within the same highlighted area, the 
attenuation positivity constraint for which the solution was forced to be 
equal to 1/5 was not needed during the inversion process. In general, 
within the area of good compromise, the solutions for different combi-
nations of λ and SART iterations tend to have similar values to each 
other. Although a good compromise between the RMS and P can be 
observed when λ > 1, values of λ < 1 were preferred because they 
provide a gradual convergence of the solution, consistent with λ values 
in the literature (e.g., Refs. [5,16,28,39]). For both the graph on the left 
and in the middle, a combination of parameters was chosen – that is λ 
equal to 0.4 and 30 SART iterations –, in view of applying it to the 
inversion at the PITOP test site without conducting prior reliability tests. 
The value 0.4 of λ provides a rather slow but gradual convergence of the 
solution, whereas 30 SART iterations ensure that the solution stabilizes. 
The corresponding 1D QS profile with depth is shown in the graph on the 
right. The 1D QS profile by Ref. [12] is shown for comparison. QS in the 
first three layers is similar to that calculated by Ref. [12], whereas the 
last layer (not constrained, as indicated by the model resolution matrix, 
Fig. 1a) shows a lower value. Occasionally, when λ was equal to 2.0 
(generally, this is not a suggested value in literature) negative or infinite 
QS values were found. 

Finally, the impulse response of the model of [12] and the model 
obtained in this study were compared. Fig. 4a and b shows the decon-
volved wave field calculated from synthetic S-wave seismograms at the 
soil surface and at a depth equal to the soil thickness of the 1D QS model 
of Telegrafenberg test site, respectively. The soil surface is used as the 
reference in the deconvolution procedure. Specifically, Fig. 4a is 
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obtained considering the QS values retrieved with SART (black line) as 
input, whereas Fig. 4b is retrieved from the original QS values (red line) 
by Ref. [12]. The difference between Fig. 4a and b is small and probably 
related to the diverse values of the last layer, which is poorly solved. 

3.2. Tito test site 

Fig. 1b shows the model resolution matrix calculated with the same 
1D VS set up model adopted by Ref. [58]. The shallowest three layers of 
the model are predicted rather well, whereas the fourth suffers from 
limited resolution and trade-off. Then, in the fifth layer, the resolution 
increases again. 

In Fig. 5, the RMS (graph on the left) and P (graph in the middle) of a 
solution with an initial fj value equal to 0 and no attenuation positivity 
constraint, are shown for λ in the range 0.1–2.0. Consistent with the 
Telegrafenberg test site, a focus on a maximum of 50 SART iterations is 
given. Differently from the previous test site, some anomalies were 
encountered for a high number of SART iterations, as discussed later in 
this section. When λ has a low value the solution converges slowly, so 
more iterations are required for the RMS to stabilize, as would be 

expected. The opposite occurs when λ increases from 1.0 to 2.0, with 2.0 
being an unacceptable value. With respect to P, the lowest values are 
achieved for less than 10 SART iterations and λ < 1. The area that falls 
within the yellow dashed line indicates what the preferable compromise 
between the best RMS and P values is. Also at this test site, within this 
area no negative QS values were obtained. Again, within the same 
highlighted area, the attenuation positivity constraint for which the 
solution was forced to be equal to 1/5 was not needed during the 
inversion procedure. Moreover, within the area of good compromise, the 
solutions for diverse combinations of λ and SART iterations tend to be 
close to one another. Even if acceptable values can be observed when λ 
> 1, values of λ < 1 were preferred, in accordance with the literature, 
since in such a way the solution can converge gradually. For both the 
graph on the left and in the middle, the same combination of parameters 
of the Telegrafenberg test site was selected – that is λ equal to 0.4 and 30 
SART iterations –, always in the perspective of using it for the inversion 
at the PITOP test site. The corresponding 1D QS profile with depth is 
shown in the graph on the right, where the 1D QS profile by Ref. [58] is 
depicted for comparison. QS is very similar to that calculated by 
Ref. [58]. Occasionally, outside the area highlighted in yellow in Fig. 5, 

Fig. 1. Resolution matrix calculated for the (a) Tel-
egrafenberg and (b) Tito test sites by adopting the 
same starting setup model of [12,58], respectively. 
The numbering of the x and y axes at the bottom and 
on the left of each matrix correspond to the layers of 
each model, where in (a) 0 indicates the shallowest 
layer and 3 the deepest one, and in (b) 0 indicates the 
shallowest layer and 4 the deepest one. The color 
palette covers the range of values assumed by the 
cells. In (a) the minimum and maximum values are 
− 0.024 and 0.990, respectively. In (b) the minimum 
and maximum values are − 0.257 and 0.982, 
respectively.   

Fig. 2. Observed and retrieved attenuation factors 
versus frequency for the Telegrafenberg test site, ob-
tained by fixing a starting fj equal to 0, with no 
attenuation positivity constraint, and 200 SART iter-
ations. Red diamonds represent the observed attenu-
ation factors. The color palette distinguishes the 
number of SART iterations. The relaxation parameters 
chosen are (a) λ = 0.2 and (b) λ = 1.8. It can be seen 
that in (a) the retrieved attenuation factors converge 
progressively towards the observed ones, whereas in 
(b) the convergence is not stable.   
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when more than 90 SART iterations were run and λ ≥ 0.9 (generally, 
these values are not suggested in literature), a negative QS was 
encountered. 

In Fig. 4c and d the deconvolved wave field estimated from synthetic 
S-wave seismograms at the soil surface and at a depth equal to the soil 
thickness of the 1D QS model of the Tito test site, respectively, are 
shown. Fig. 4c, in particular, is retrieved from the 1D QS model esti-
mated in this work. Fig. 4d, instead, considers the original 1D QS model 
by Ref. [58]. The soil surface is taken as the reference in the deconvo-
lution process. Also for this test site, the results generated by the two 
different inputs are comparable, showing that the effect of the small 
differences in the estimated models is negligible. 

4. Application to the Piana di Toppo (PITOP) test site 

PITOP is the borehole geophysical testing site of the National Insti-
tute of Oceanography and Applied Geophysics – OGS (OGS). It is a free 
field rectangular area of around 4500 m2 located at Piana di Toppo in 
the Toppo inter-mountain plain (municipality of Travesio, Friuli Venezia 
Giulia region), northeastern Italy. The test site lies on Quaternary loose 
coarse gravels overlying conglomerates (Montello conglomerate, Miocene 
formation) [64]. Here three boreholes were drilled down to a depth of 
280 m (“well 1”), 380 m (“well 2”), and 422 m (“well 3”). VP and VS 
profiles were retrieved from sonic logs integrated with Vertical Seismic 
Profiling (VSP) [64]. An average P-wave quality factor (QP) value, equal 
to 28, of the 1D QP profile obtained considering “well 2” and “well 3” 
was also estimated using two methods [63]. The first was the spectral 
ratio method, which measures the variation of the amplitude spectrum 

in the VSP down-going P-wave signal (direct) at different depths. The 
second adopts the signal dispersion analysis for estimating the attenu-
ation. The estimate is achieved by comparing the velocities retrieved 
from sonic logs that use a signal frequency of several thousand Hz, and 
VSP, characterized by a signal frequency of around 50 Hz. Both methods 
consider the variation of the signal over a depth range between 100 m 
and 380 m (F. Poletto, personal communication, November 8th, 2020). 
The relationship between QP and QS in sediments varies appreciably in 
the literature (e.g., Refs. [18,49,52]), so the average QS value was 
retrieved in general terms from the following relation [6], by assuming 
that the subsoil investigated is an isotropic Poisson solid: 

QP

QS
=

9
4

(9) 

giving an average QS value equal to 12.44. 
In this study, an ambient seismic noise measurement campaign in 

array configuration was realized at the PITOP test site. 11 Sentinel-GEO 
Seismic stations (Lunitek) that integrate a triaxial 85 dB MEMS accel-
erometer plus a triaxial set of 4.5 Hz geophones, as well as GNSS receiver 
and WiFi module, were deployed in three concentric circles. The mini-
mum, median, and maximum approximate radii of the array were 5.1 m, 
14.9 m, and 33.6 m, respectively. Minimum and maximum interstation 
distances were 5.0 m and 80.9 m, respectively. The stations recorded 
simultaneously for more than 2 h at 250 samples/sec. The acquisition of 
the point position was performed with a GNSS SoluTOP MS1 system 
(SoluTOP s.a.s.) using the software android open-source Qfield. Data 
points were sent in real time to a PostgreSQL database (PostGIS geo-
spatial extension). After dividing the recording of the vertical 

Fig. 3. Telegrafenberg test site. On the left, variation of the Root Mean Square (RMS) for all tested λ, no attenuation positivity constraint and a maximum number of 
50 SART iterations, when the starting fj is equal to 0. In the middle, variation of the perturbation (P) for all tested λ, no attenuation positivity constraint, and a 
maximum number of 50 SART iterations, when the starting fj is equal to 0. The yellow dashed line indicates the area of best compromise between this graph and the 
one on the left. On the right, 1D QS profile obtained when λ is set equal to 0.4 at the 30th SART iteration. The values of RMS and P calculated with the same 
combination of parameters are indicated with a black square in the graph on the right and in the middle, respectively. The profile of [12] is shown with a red 
dashed line. 

I. Dreossi and S. Parolai                                                                                                                                                                                                                       



Soil Dynamics and Earthquake Engineering 161 (2022) 107387

7

component of each station into 60-s non-overlapping windows, and 
tapering each window for 5% of its length at both ends with a cosine 
function to reduce leakages, the spatial correlation coefficients were 
calculated in the same way as in Ref. [58]. 

4.1. Results 

The inversion for obtaining the 1D VS profile was performed 
following [61] utilizing the modified genetic algorithm proposed by 
Ref. [82]. Values of the Rayleigh-wave dispersion curve over the range 
3.36–24.38 Hz were considered. Horizontal-to-vertical spectral ratios 
were not taken into account for the inversion, since the site response in 
the considered frequency range is almost flat. The inversion was per-
formed considering the apparent dispersion curve because the domi-
nance of the fundamental and higher modes varies with frequency, 
based on the considered VS profile. For this reason, the observed 
dispersion curve of phase velocity has to be treated as apparent. The 
search of the genetic algorithm was done considering a population of 50 
starting models and running 150 generations. The crossover rate, which 
is an operator that combines information of two (or more) “parent” 
selected models randomly, was fixed to 0.7. The mutation rate, i.e., the 
operator used to ensure a certain degree of diversity in the population, 
was set to 0.01. The inversion was repeated seven times by changing the 
initial random number (also called seed number). Indeed, this inversion 
has something of a probabilistic nature in that it adopts random numbers 
for gaining models next to a global optimum solution [61]. The average 
RMS of the differences between observed and calculated models for each 
generated model represents the misfit function, where the model giving 
the minimum misfit was denoted to be the optimal version. Fig. 6 shows 

the results of the VS inversion, with the 1D VS profile retrieved by 
Ref. [64] also depicted for comparison. The best model obtained by the 
inversion of the dispersion curve showed some differences with respect 
to that of [64]. Note that, while the former provides an average velocity 
structure below the array, the latter represents the velocity versus depth 
profile only nearby the borehole. This can affect the comparison, since 
the local stratigraphy is not homogeneous. 

The estimation of Q was performed while considering the best VS 
model. From the analysis of both the model resolution matrix and the 
Jacobian matrix (not shown here), the inversion was carried out only for 
the first three layers of the best VS model. In this work, the analysis was 
focused on the estimation of QS. This is because for the first three layers 
of the best VS model the VS/VP ratio was smaller than 0.45. The value of λ 
was fixed to 0.4 and 30 SART iterations were run. The initial fj was set 
equal to 0. The attenuation positivity constraint was not imposed on the 
solutions. The QS results are presented in Table 2 and a good fit of the 
calculated attenuation factors to the ones observed was obtained. The 
1D QS profile calculated using SART provided values of QS that are lower 
than the mean QS estimated by converting the average QP value of [63]. 
It should be pointed out that the latter was derived from the analysis of 
measurements taken over the depth range between 100 m and 380 m, 
therefore much deeper than the depth range investigated by the noise 
array. Considering this, it seems reasonable that the shallower layers 
might have lower values of QS, within a range close to what was 
observed at greater depths. 

5. Discussion and conclusions 

The solution achieved using the inversion technique proposed by 

Fig. 4. Deconvolved wave field obtained from the synthetic S-wave seismograms at the soil surface and at a depth equal to the soil thickness of the 1D QS model 
calculated at the Telegrafenberg test site using (a) the QS values retrieved with SART (black line) and (b) the original QS values by Ref. [12] (red line), respectively, 
and at the Tito test site using (c) the QS values retrieved with SART (black line) and (d) the original QS values by Ref. [58] (red line), respectively. The soil surface is 
used as the reference. 
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Ref. [58], and based on a least-squares algorithm with attenuation 
positivity constraint (e.g., Ref. [50]), requires an accurate selection of 
the damping factors via a time-consuming trial and error procedure. In 
this work, the inversion of QS was carried out by replacing the 
least-squares algorithm with SART. SART is a suitable algorithm for 
linear inversions, and it offers the advantage of setting a positivity 
attenuation constraint to the solutions with ease. 

The relaxation parameter λ, the number of SART iterations, and the 
attenuation positivity constraint, were the parameters tested for the 1D 
QS inversion at both the Telegrafenberg and Tito test sites. It was 
confirmed that λ < 1.0 let the solution converge gradually, proving 
robust QS values. Realistic results were also achieved with λ > 1, but the 
solution was unstable during the iterative process. For this reason, in the 
present work λ values lower than 1 were preferred, also in agreement 
with previous studies (e.g., Ref. [28]). Note that the computation time 
remains very limited, since the matrices considered in this work are 
small. The number of SART iterations required for the solution to 
converge – approximately, a minimum that goes from 5 to 30, 
depending on the selected λ – is acceptable since the inversion is very 
quick (i.e., of the order of a few seconds). This might also allow in the 
future to include a larger amount of data and, if justified by the reso-
lution of the dispersion curves, of layers. The choice of both λ and the 
(small) number of SART iterations in the proposed approach, thus, can 
be done in a relatively wide range of values without substantially 
increasing the very rapid computation time or diminishing the conver-
gence. The reliability tests at the two test sites highlighted that the 
attenuation positivity constraint was not necessary to avoid 

non-physical (negative Q) solutions for a wide combination of λ and 
number of SART iterations. This differs from the original inversion 
approach proposed by Ref. [58], for which the attenuation positivity 
constraint was mandatory. The analyses at both test sites showed that 
the Qs values obtained with SART are compatible with the original 1D QS 
models estimated using the inversion method by Ref. [58], but also with 
the data derived by independent geophysical measurements at the Tito 
test site. It is worth noting that this study was focused on deriving QS and 
does not treat the azimuthal distribution of ambient seismic noise 
sources. This latter aspect should be verified when analyzing data to 
accurately estimate both the phase velocity and seismic attenuation. 

Finally, the application of the proposed approach to the PITOP test 
site showed encouraging results, which should be further validated by 
independent geophysical measurements carried out over the depth 
range investigated by the ambient seismic noise array. 

5.1. Data and resources 

Data from the Telegrafenberg test site were acquired by the Helm-
holtz Centre Potsdam GFZ German Research Centre for Geosciences 
using the Multi-Parameter wireless sensing system (MPwise) [13] 
seismic provided by the Geophysical Instrument Pool Potsdam (GIPP). 
Data from the Tito test site were collected as part of a scientific collab-
oration between the Helmholtz Centre Potsdam GFZ German Research 
Centre for Geosciences, the Università degli Studi della Basilicata, and 
the CNR-IMAA, which manages the Tito test site. 

Seismic noise data acquired at the PITOP OGS geophysical test site 

Fig. 5. Tito test site. On the left, variation of the Root Mean Square (RMS) for all tested λ, no attenuation positivity constraint and a maximum number of 50 SART 
iterations, when the starting fj is equal to 0. In the middle, variation of the perturbation (P) for all tested λ, no attenuation positivity constraint, and a maximum 
number of 50 SART iterations, when the starting fj is equal to 0. The yellow dashed line indicates the area of best compromise between this graph and the one on the 
left. On the right, 1D QS profile obtained when λ is set equal to 0.4 at the 30th SART iteration. The values of RMS and P calculated with the same combination of 
parameters is indicated with a black square in the graph on the right and in the middle, respectively. The profile of [58] is shown with a red dashed line. 
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are available at http://www.crs.ogs.it/archive/data_PITOP_noise/data_ 
array_PITOP.tgz (last accessed 2022). 

Fig. 1 was created with Python’s libraries Matplotlib [38] and 
Numpy [32]. The remaining figures were produced using the Generic 
Mapping Tools (GMT), version 5.4.4 [78]. 

Author statement 

Ilaria Dreossi: Conceptualization, Methodology, Software, Formal 
analysis, Investigation, Writing - Original Draft. 

Stefano Parolai: Conceptualization, Methodology, Writing - Review 
and Editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

The authors thank the Helmholtz Centre Potsdam GFZ German 
Research Centre for Geosciences for providing both the Telegrafenberg 
and Tito test site data sets. Thanks to Flavio Poletto, Cinzia Bellezza and 
their OGS working group for providing the 1D VS profile and the average 

QP value for the PITOP test site. Marco Severin (SoluTOP s.a.s.) kindly 
lent one GNSS SoluTOP MS1 system (SoluTOP s.a.s.) and gave assistance 
with the use of the instrument, the software android open-source Qfield, 
and the PostgreSQL database (PostGIS geospatial extension). The au-
thors acknowledge Frank Rackwitz (Technische Universität Berlin) for 
his help and valuable suggestions. Thanks to the OGS colleagues for their 
support, in particular Carla Barnaba, Paolo Di Bartolomeo, and David 
Zuliani. Valerio Poggi helped in performing the ambient seismic noise 
measurements at the PITOP test site. Stephen Conway helped in 
improving the English, as well as Kevin Fleming, who also kindly pro-
vided useful comments on the manuscript. The authors also thank the 
Editor-in-Chief Hesham El Naggar, Fabian Bonilla, and the other two 
anonymous Reviewers for their constructive comments and suggestions. 
This study was supported by the agreement between the Regione del 
Veneto and OGS (Italy) (2020–2022). 

References 

[1] Aki K. Space and time spectra of stationary stochastic waves, with special reference 
to microtremors. Bull Earthq Res Inst 1957;35:415–56. 

[2] Aki K. Scattering and attenuation of shear waves in the lithosphere. J Geophys Res 
1980;85:6496–504. https://doi.org/10.1029/JB085iB11p06496. 

[3] Albarello D, Baliva F. In-situ estimates of material damping from environmental 
noise measurements. In: Mucciarelli M, Herak M, Cassidy J, editors. Increasing 
seismic safety by combining engineering technologies and seismological data. 
Dordrecht: Springer; 2009. p. 73–84. https://doi.org/10.1007/978-1-4020-9196- 
4_6. 

[4] Allmark C, Curtis A, Galetti E, de Ridder S. Seismic attenuation from ambient noise 
across the North Sea Ekofisk permanent array. J Geophys Res Solid Earth 2018; 
123:8691–710. https://doi.org/10.1029/2017JB015419. 

[5] Andersen AH, Kak AC. Simultaneous algebraic reconstruction technique (SART): a 
superior implementation of the ART algorithm. Ultrason Imag 1984;6:81–94. 
https://doi.org/10.1016/0161-7346(84)90008-7. 

[6] Anderson D, Ben-Menahem A, Archambeau C. Attenuation of seismic energy in the 
upper mantle. J Geophys Res 1965;70:1441–8. https://doi.org/10.1029/ 
JZ070i006p01441. 

[7] Anderson JG. Physical processes that control strong ground motionSchubert G, 
editor. Treatise on geophysics, earthquake seismology 2007;5:513–65. Elsevier, 
Amsterdam. 

Fig. 6. VS inversion results retrieved from the PITOP 
OGS geophysical test site. The inversion was per-
formed considering the apparent Rayleigh wave 
dispersion curve. (a) Observed dispersion curve (red 
diamonds) and calculated Rayleigh wave dispersion 
curve (black circles). (b) 1D VS profiles. The best- 
fitting model (black line), models in a range of 10% 
from the best model (orange lines), and all models 
tested (gray lines) are shown. The profile of [64] is 
indicated with a red line. (c) Misfit at each 
generation.   

Table 2 
1D QS profile for the PITOP OGS geophysical test site.  

Layer Thickness [m] VS [m/s]a QS
b 

1 11.1 551.4 5.7 
2 33.2 741.6 4.4 
3  1011.8 5.5  

a Shear-wave velocity. 
b Shear-wave quality factor. 

I. Dreossi and S. Parolai                                                                                                                                                                                                                       

http://www.crs.ogs.it/archive/data_PITOP_noise/data_array_PITOP.tgz
http://www.crs.ogs.it/archive/data_PITOP_noise/data_array_PITOP.tgz
http://refhub.elsevier.com/S0267-7261(22)00236-6/sref1
http://refhub.elsevier.com/S0267-7261(22)00236-6/sref1
https://doi.org/10.1029/JB085iB11p06496
https://doi.org/10.1007/978-1-4020-9196-4_6
https://doi.org/10.1007/978-1-4020-9196-4_6
https://doi.org/10.1029/2017JB015419
https://doi.org/10.1016/0161-7346(84)90008-7
https://doi.org/10.1029/JZ070i006p01441
https://doi.org/10.1029/JZ070i006p01441
http://refhub.elsevier.com/S0267-7261(22)00236-6/sref7
http://refhub.elsevier.com/S0267-7261(22)00236-6/sref7
http://refhub.elsevier.com/S0267-7261(22)00236-6/sref7


Soil Dynamics and Earthquake Engineering 161 (2022) 107387

10

[8] Arai H, Tokimatsu K. S-wave velocity profiling by inversion of microtremor H/V 
spectrum. Bull Seismol Soc Am 2004;94(1):53–63. https://doi.org/10.1785/ 
0120030028. 

[9] Arai H, Tokimatsu K. S-wave velocity profiling by joint inversion of microtremor 
dispersion curve and horizontal-to-vertical (H/V) spectrum. Bull Seismol Soc Am 
2005;95:1766–78. https://doi.org/10.1785/0120040243. 

[10] Assimaki D, Li W, Steidl JH, Tsuda K. Site amplification and attenuation via 
downhole array seismogram inversion: a comparative study of the 2003 Miyagi- 
Oki aftershock sequence. Bull Seismol Soc Am 2008;98(1):301–30. https://doi. 
org/10.1785/0120070030. 

[11] Assimaki D, Steidl J, Liu PC. Attenuation and velocity structure for site response 
analyses via downhole seismogram inversion. Pure Appl Geophys 2006;163: 
81–118. https://doi.org/10.1007/s00024-005-0009-7. 

[12] Boxberger T. A comparison of different seismological and geotechnical parameters 
for site characterization. Berlin, Germany: Genehmigte Dissertation, Technische 
Universität Berlin; 2016. 

[13] Boxberger T, Fleming K, Pittore M, Parolai S, Pilz M, Mikulla S. The Multi- 
Parameter wireless sensing system (Mpwise): its description and application to 
earthquake risk mitigation. Sensors 2017;17:10. https://doi.org/10.3390/ 
s17102400. 

[14] Boxberger T, Picozzi M, Parolai S. Shallow geology characterization using Rayleigh 
and Love wave dispersion curves derived by seismic noise array measurements. 
J Appl Geophys 2011;75(2):345–54. https://doi.org/10.1016/j. 
jappgeo.2011.06.032. 

[15] Boxberger T, Pilz M, Parolai S. Shear wave velocity versus quality factor: results 
from seismic noise recordings. Geophys J Int 2017;210:660–70. https://doi.org/ 
10.1093/gji/ggx161. 

[16] Censor Y, Eggermont PPB, Gordon D. Strong underrelaxation in Kaczmarz’s 
method for inconsistent systems. Numer Math 1983;41:83–92. https://doi.org/ 
10.1007/BF01396307. 

[17] Cheng F, Draganov D, Xia J, Hu Y, Liu J. Q-estimation using seismic interferometry 
from vertical well data. J Appl Geophys 2018;159:16–22. https://doi.org/ 
10.1016/j.jappgeo.2018.07.019. 

[18] Clouser RH, Langston CA. QP-QS relations in a sedimentary basin using converted 
phases. Bull Seismol Soc Am 1991;81(3):733–50. 

[19] Dainty AM. A scattering model to explain seismic Q observations in the lithosphere 
between 1 and 30 Hz. Geophys Res Lett 1981;8:1126–8. 

[20] Drwiła M, Wcisło M, Anikiev D, Eisner L, Keller R. Passive seismic measurements of 
seismic attenuation in Delaware Basin. Lead Edge 2019;38:138–43. https://doi. 
org/10.1190/tle38020138.1. 
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