A properly designed skip-connection convolutional autoencoder deep generator is able to capture the inner structure of shot gathers from subsampled seismic data without any pre-training procedure. The complete interpolated data can be reconstructed by feeding the autoencoder with multidimensional random noise and minimizing the mean squared error between generated and measured data. The performances achieved on synthetic and field data show the effectiveness of the proposed method.

A Deep Prior Convolutional Autoencoder for Seismic Data Interpolation

Lipari, V.;
2020-01-01

Abstract

A properly designed skip-connection convolutional autoencoder deep generator is able to capture the inner structure of shot gathers from subsampled seismic data without any pre-training procedure. The complete interpolated data can be reconstructed by feeding the autoencoder with multidimensional random noise and minimizing the mean squared error between generated and measured data. The performances achieved on synthetic and field data show the effectiveness of the proposed method.
File in questo prodotto:
File Dimensione Formato  
kong2020deep_eage.pdf

non disponibili

Licenza: Non specificato
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/25065
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact