In this paper, we review diffusion phenomena in stochastically perturbed Hamiltonian systems, with the aim of defining the framework to use Nekhoroshev-like estimates as prototypes for the form of the diffusion coefficient. A discussion of the features of this framework is carried out. More importantly, the results of numerical simulations based on the proposed models are compared against the experimental data from recent measurements performed at the CERN Large Hadron Collider (LHC) of the extent of phase space where bounded motions occur. The main conclusions are presented and discussed in detail together with future steps.
Diffusion in stochastically perturbed Hamiltonian systems with applications to the recent LHC dynamic aperture experiments
Mazzarisi O.;
2017-01-01
Abstract
In this paper, we review diffusion phenomena in stochastically perturbed Hamiltonian systems, with the aim of defining the framework to use Nekhoroshev-like estimates as prototypes for the form of the diffusion coefficient. A discussion of the features of this framework is carried out. More importantly, the results of numerical simulations based on the proposed models are compared against the experimental data from recent measurements performed at the CERN Large Hadron Collider (LHC) of the extent of phase space where bounded motions occur. The main conclusions are presented and discussed in detail together with future steps.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.