Seismic hazard assessment can be performed following a neo-deterministic approach (NDSHA), which allows to give a realistic description of the seismic ground motion due to an earthquake of given distance and magnitude. The approach is based on modelling techniques that have been developed from a detailed knowledge of both the seismic source process and the propagation of seismic waves. This permits us to define a set of earthquake scenarios and to simulate the associated synthetic signals without having to wait for a strong event to occur. NDSHA can be applied at the regional scale, computing seismograms at the nodes of a grid with the desired spacing, or at the local scale, taking into account the source characteristics, the path and local geological and geotechnical conditions. Synthetic signals can be produced in a short time and at a very low cost/benefit ratio. They can be used as seismic input in subsequent engineering analyses aimed at the computation of the full non-linear seismic response of the structure or simply the earthquake damaging potential. Massive parametric tests, to explore the influence not only of deterministic source parameters and structural models but also of random properties of the same source model, enable realistic estimate of seismic hazard and their uncertainty. This is particular true in those areas for which scarce (or no) historical or instrumental information is available. Here we describe the implementation of the seismological codes and the results of some parametric tests performed using the EU-India Grid infrastructure.

Seismic hazard assesment: Parametric studies on grid infrastructures

Magrin A.;La Mura C.;
2014-01-01

Abstract

Seismic hazard assessment can be performed following a neo-deterministic approach (NDSHA), which allows to give a realistic description of the seismic ground motion due to an earthquake of given distance and magnitude. The approach is based on modelling techniques that have been developed from a detailed knowledge of both the seismic source process and the propagation of seismic waves. This permits us to define a set of earthquake scenarios and to simulate the associated synthetic signals without having to wait for a strong event to occur. NDSHA can be applied at the regional scale, computing seismograms at the nodes of a grid with the desired spacing, or at the local scale, taking into account the source characteristics, the path and local geological and geotechnical conditions. Synthetic signals can be produced in a short time and at a very low cost/benefit ratio. They can be used as seismic input in subsequent engineering analyses aimed at the computation of the full non-linear seismic response of the structure or simply the earthquake damaging potential. Massive parametric tests, to explore the influence not only of deterministic source parameters and structural models but also of random properties of the same source model, enable realistic estimate of seismic hazard and their uncertainty. This is particular true in those areas for which scarce (or no) historical or instrumental information is available. Here we describe the implementation of the seismological codes and the results of some parametric tests performed using the EU-India Grid infrastructure.
2014
9783319002965
Seismic hazard; E-infrastructures
File in questo prodotto:
File Dimensione Formato  
14-03.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/3814
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact