We present processing details of seismic-while-drilling data recently acquired on one of the onshore wells by a prototype DrillCAM system with wireless geophones, top-drive, and downhole vibration sensors. The general flow follows an established practice and consists of correlation with a drillbit pilot signal, vertical stacking, and pilot deconvolution. This work's novelty is the usage of the memory-based near-bit sensor with a significant time drift reaching 30-40 minutes at the end of each drilling run. A data-driven automatic time alignment procedure is developed to accurately eliminate time drift error by utilizing the top-drive acceleration sensor as a reference. After the alignment, the processing flow can utilize the top-drive or the near-bit pilots similarly. We show each processing step's effect on the final data quality and discuss some implementation details.
Processing of Seismic-While-Drilling Data from the DrillCAM System Acquired with Wireless Geophones, Top-Drive, and Downhole Vibrations Sensors
Poletto F.;
2021-01-01
Abstract
We present processing details of seismic-while-drilling data recently acquired on one of the onshore wells by a prototype DrillCAM system with wireless geophones, top-drive, and downhole vibration sensors. The general flow follows an established practice and consists of correlation with a drillbit pilot signal, vertical stacking, and pilot deconvolution. This work's novelty is the usage of the memory-based near-bit sensor with a significant time drift reaching 30-40 minutes at the end of each drilling run. A data-driven automatic time alignment procedure is developed to accurately eliminate time drift error by utilizing the top-drive acceleration sensor as a reference. After the alignment, the processing flow can utilize the top-drive or the near-bit pilots similarly. We show each processing step's effect on the final data quality and discuss some implementation details.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.