A pandemic caused by a new coronavirus (Covid-19) has spread worldwide, inducing an epidemic still active in Argentina. In this chapter, we present a case study using an SEIR (Susceptible-Exposed-Infected-Recovered) diffusion model of fractional order in time to analyze the evolution of the epidemic in Buenos Aires and neighboring areas (Región Metropolitana de Buenos Aires, (RMBA)) comprising about 15 million inhabitants. In the SEIR model, individuals are divided into four classes, namely, susceptible (S), exposed (E), infected (I) and recovered (R). The SEIR model of fractional order allows for the incorporation of memory, with hereditary properties of the system, being a generalization of the classic SEIR first-order system, where such effects are ignored. Furthermore, the fractional model provides one additional parameter to obtain a better fit of the data. The parameters of the model are calibrated by using as data the number of casualties officially reported. Since infinite solutions honour the data, we show a set of cases with different values of the lockdown parameters, fatality rate, and incubation and infectious periods. The different reproduction ratios R0 and infection fatality rates (IFR) so obtained indicate the results may differ from recent reported values, constituting possible alternative solutions. A comparison with results obtained with the classic SEIR model is also included. The analysis allows us to study how isolation and social distancing measures affect the time evolution of the epidemic.

An SEIR Epidemic Model of Fractional Order to Analyze the Evolution of the Covid-19 Epidemic in Argentina

Carcione J. M.;
2021-01-01

Abstract

A pandemic caused by a new coronavirus (Covid-19) has spread worldwide, inducing an epidemic still active in Argentina. In this chapter, we present a case study using an SEIR (Susceptible-Exposed-Infected-Recovered) diffusion model of fractional order in time to analyze the evolution of the epidemic in Buenos Aires and neighboring areas (Región Metropolitana de Buenos Aires, (RMBA)) comprising about 15 million inhabitants. In the SEIR model, individuals are divided into four classes, namely, susceptible (S), exposed (E), infected (I) and recovered (R). The SEIR model of fractional order allows for the incorporation of memory, with hereditary properties of the system, being a generalization of the classic SEIR first-order system, where such effects are ignored. Furthermore, the fractional model provides one additional parameter to obtain a better fit of the data. The parameters of the model are calibrated by using as data the number of casualties officially reported. Since infinite solutions honour the data, we show a set of cases with different values of the lockdown parameters, fatality rate, and incubation and infectious periods. The different reproduction ratios R0 and infection fatality rates (IFR) so obtained indicate the results may differ from recent reported values, constituting possible alternative solutions. A comparison with results obtained with the classic SEIR model is also included. The analysis allows us to study how isolation and social distancing measures affect the time evolution of the epidemic.
2021
9789811624490
9789811624506
34A08 Fractional Differential Equations; 34A55 Inverse problems; 65L07 Numerical investigation of stability of solutions; 92C20 Medical epidemiology;
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/42534
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact