The definition of realistic seismic input can be obtained from the computation of a wide set of time histories, corresponding to possible seismotectonic scenarios. The propagation of the waves in the bedrock from the source to the local laterally varying structure is computed with the modal summation technique, while in the laterally heterogeneous structure the finite difference method is used. The definition of shear wave velocities within the soil cover is obtained from the non-linear inversion of the dispersion curve of group velocities of Rayleigh waves, artificially or naturally generated. Information about the possible focal mechanisms of the sources can be obtained from historical seismicity, based on earthquake catalogues and inversion of isoseismal maps. In addition, morphostructural zonation and pattern recognition of seismogenic nodes is useful to identify areas prone to strong earthquakes, based on the combined analysis of topographic, tectonic, geological maps and satellite photos. We show that the quantitative knowledge of regional geological structures and the computation of realistic ground motion can be a powerful tool for a preventive definition of the seismic hazard in Italy. Then, the formulation of reliable building codes, based on the evaluation of the main potential earthquakes, will have a great impact on the effective reduction of the seismic vulnerability of italian urban areas, validating or improving the national building code.

Realistic Ground Motion Scenarios: Methodological Approach

PERESAN ANTONELLA;
2008

Abstract

The definition of realistic seismic input can be obtained from the computation of a wide set of time histories, corresponding to possible seismotectonic scenarios. The propagation of the waves in the bedrock from the source to the local laterally varying structure is computed with the modal summation technique, while in the laterally heterogeneous structure the finite difference method is used. The definition of shear wave velocities within the soil cover is obtained from the non-linear inversion of the dispersion curve of group velocities of Rayleigh waves, artificially or naturally generated. Information about the possible focal mechanisms of the sources can be obtained from historical seismicity, based on earthquake catalogues and inversion of isoseismal maps. In addition, morphostructural zonation and pattern recognition of seismogenic nodes is useful to identify areas prone to strong earthquakes, based on the combined analysis of topographic, tectonic, geological maps and satellite photos. We show that the quantitative knowledge of regional geological structures and the computation of realistic ground motion can be a powerful tool for a preventive definition of the seismic hazard in Italy. Then, the formulation of reliable building codes, based on the evaluation of the main potential earthquakes, will have a great impact on the effective reduction of the seismic vulnerability of italian urban areas, validating or improving the national building code.
9789780735401
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.14083/4875
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact