Given high urbanization rates and increasing spatio-temporal variability in many present-day cities, exposure information is often out-of-date, highly aggregated or spatially fragmented, increasing the uncertainties associated with seismic risk assessments. This work therefore aims at using space-based technologies to estimate, complement and extend exposure data at multiple scales, over large areas and at a comparatively low cost for the case of the city of Bishkek, Kyrgyzstan. At a neighborhood scale, an analysis of urban structures using medium-resolution optical satellite images is performed. Applying image classification and change-detection analysis to a time-series of Landsat images, the urban environment can be delineated into areas of relatively homogeneous urban structure types, which can provide a first estimate of an exposed building stock (e.g., approximate age of structures, composition and distribution of predominant building types). At a building-by-building scale, a more detailed analysis of the exposed building stock is carried out using a high-resolution Quickbird image. Furthermore, the multi-resolution datasets are combined with census data to disaggregate population statistics. The tools used within this study are being developed on a free- and open-source basis and aim at being transparent, usable and transferable.
Exposure Estimation from Multi-Resolution Optical Satellite Imagery for Seismic Risk Assessment
Parolai S.;
2012-01-01
Abstract
Given high urbanization rates and increasing spatio-temporal variability in many present-day cities, exposure information is often out-of-date, highly aggregated or spatially fragmented, increasing the uncertainties associated with seismic risk assessments. This work therefore aims at using space-based technologies to estimate, complement and extend exposure data at multiple scales, over large areas and at a comparatively low cost for the case of the city of Bishkek, Kyrgyzstan. At a neighborhood scale, an analysis of urban structures using medium-resolution optical satellite images is performed. Applying image classification and change-detection analysis to a time-series of Landsat images, the urban environment can be delineated into areas of relatively homogeneous urban structure types, which can provide a first estimate of an exposed building stock (e.g., approximate age of structures, composition and distribution of predominant building types). At a building-by-building scale, a more detailed analysis of the exposed building stock is carried out using a high-resolution Quickbird image. Furthermore, the multi-resolution datasets are combined with census data to disaggregate population statistics. The tools used within this study are being developed on a free- and open-source basis and aim at being transparent, usable and transferable.File | Dimensione | Formato | |
---|---|---|---|
wieland_et_al_2012_ijgi.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non specificato
Dimensione
1.78 MB
Formato
Adobe PDF
|
1.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.