Vibroseis is a source used commonly for inland seismic exploration. This non-destructive source is often used in urban areas with strong environmental noise. The main goal of seismic data processing is to increase the signal/noise ratio where a determinant step is deconvolution. Vibroseis seismic data do not meet the basic minimum-phase assumption for the application of spiking and predictive deconvolution, therefore various techniques, such as phase shift, are applied to the data, to be able to successfully perform deconvolution of vibroseis data. This work analyzes the application of deconvolution techniques before and after cross-correlation on a real data set acquired for high resolution prospection of deep aquifers. In particular, we compare pre-correlation spiking and predictive deconvolution with Wiener filtering and with post-correlation time variant spectral whitening deconvolution. The main result is that at small offsets, post cross-correlation spectral whitening deconvolution and pre-correlation spiking deconvolution yield comparable results, while for large offsets the best result is obtained by applying a pre-cross-correlation predictive deconvolution.

Vibroseis deconvolution: A comparison of pre and post correlation vibroseis deconvolution data in real noisy data

Baradello L;Accaino F
2013

Abstract

Vibroseis is a source used commonly for inland seismic exploration. This non-destructive source is often used in urban areas with strong environmental noise. The main goal of seismic data processing is to increase the signal/noise ratio where a determinant step is deconvolution. Vibroseis seismic data do not meet the basic minimum-phase assumption for the application of spiking and predictive deconvolution, therefore various techniques, such as phase shift, are applied to the data, to be able to successfully perform deconvolution of vibroseis data. This work analyzes the application of deconvolution techniques before and after cross-correlation on a real data set acquired for high resolution prospection of deep aquifers. In particular, we compare pre-correlation spiking and predictive deconvolution with Wiener filtering and with post-correlation time variant spectral whitening deconvolution. The main result is that at small offsets, post cross-correlation spectral whitening deconvolution and pre-correlation spiking deconvolution yield comparable results, while for large offsets the best result is obtained by applying a pre-cross-correlation predictive deconvolution.
File in questo prodotto:
File Dimensione Formato  
baradello3.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 3.26 MB
Formato Adobe PDF
3.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.14083/1108
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact