Ocean and marine ecosystems provide a range of valuable services to humans, including benefits such as carbon sequestration, whose economic value are as yet poorly understood. This paper presents a novel contribution to the valuation of carbon sequestration services in marine ecosystems with an application to the Mediterranean Sea. We combine a state-of-the-art biogeochemical model with various estimates of the social cost of carbon emissions to provide a spatially explicit characterization of the current flow of values that are attributable to the various sequestration processes, including the biological component. Using conservative estimates of the social cost of carbon, we evaluate the carbon sequestration value flows over the entire basin to range between 127 and 1722 million (sic)/year. Values per unit area range from 135 to 1000 (sic)/km(2) year, with the exclusive economic zone of some countries acting as net carbon sources. Whereas the contribution of physical processes can be either positive or negative, also depending on the properties of incoming Atlantic water, the contribution of biological processes to the marine "blue carbon" sequestration is always positive, and found to range between 100 to 1500 million (sic)/year for the whole basin. (c) 2015 The Authors. Published by Elsevier Ltd.

Ocean and marine ecosystems provide a range of valuable services to humans, including benefits such as carbon sequestration, whose economic value are as yet poorly understood. This paper presents a novel contribution to the valuation of carbon sequestration services in marine ecosystems with an application to the Mediterranean Sea. We combine a state-of-the-art biogeochemical model with various estimates of the social cost of carbon emissions to provide a spatially explicit characterization of the current flow of values that are attributable to the various sequestration processes, including the biological component. Using conservative estimates of the social cost of carbon, we evaluate the carbon sequestration value flows over the entire basin to range between 127 and 1722 million (sic)/year. Values per unit area range from 135 to 1000 (sic)/km(2) year, with the exclusive economic zone of some countries acting as net carbon sources. Whereas the contribution of physical processes can be either positive or negative, also depending on the properties of incoming Atlantic water, the contribution of biological processes to the marine "blue carbon" sequestration is always positive, and found to range between 100 to 1500 million (sic)/year for the whole basin. (c) 2015 The Authors. Published by Elsevier Ltd.

Estimating the value of carbon sequestration ecosystem services in the Mediterranean Sea: An ecological economics approach

Melaku Canu D.;Lazzari P.;Cossarini G.;Solidoro C.
2015-01-01

Abstract

Ocean and marine ecosystems provide a range of valuable services to humans, including benefits such as carbon sequestration, whose economic value are as yet poorly understood. This paper presents a novel contribution to the valuation of carbon sequestration services in marine ecosystems with an application to the Mediterranean Sea. We combine a state-of-the-art biogeochemical model with various estimates of the social cost of carbon emissions to provide a spatially explicit characterization of the current flow of values that are attributable to the various sequestration processes, including the biological component. Using conservative estimates of the social cost of carbon, we evaluate the carbon sequestration value flows over the entire basin to range between 127 and 1722 million (sic)/year. Values per unit area range from 135 to 1000 (sic)/km(2) year, with the exclusive economic zone of some countries acting as net carbon sources. Whereas the contribution of physical processes can be either positive or negative, also depending on the properties of incoming Atlantic water, the contribution of biological processes to the marine "blue carbon" sequestration is always positive, and found to range between 100 to 1500 million (sic)/year for the whole basin. (c) 2015 The Authors. Published by Elsevier Ltd.
2015
Ocean and marine ecosystems provide a range of valuable services to humans, including benefits such as carbon sequestration, whose economic value are as yet poorly understood. This paper presents a novel contribution to the valuation of carbon sequestration services in marine ecosystems with an application to the Mediterranean Sea. We combine a state-of-the-art biogeochemical model with various estimates of the social cost of carbon emissions to provide a spatially explicit characterization of the current flow of values that are attributable to the various sequestration processes, including the biological component. Using conservative estimates of the social cost of carbon, we evaluate the carbon sequestration value flows over the entire basin to range between 127 and 1722 million (sic)/year. Values per unit area range from 135 to 1000 (sic)/km(2) year, with the exclusive economic zone of some countries acting as net carbon sources. Whereas the contribution of physical processes can be either positive or negative, also depending on the properties of incoming Atlantic water, the contribution of biological processes to the marine "blue carbon" sequestration is always positive, and found to range between 100 to 1500 million (sic)/year for the whole basin. (c) 2015 The Authors. Published by Elsevier Ltd.
File in questo prodotto:
File Dimensione Formato  
Glob_Env_Change_MelakuCanu_etal_2015.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/1209
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 101
  • ???jsp.display-item.citation.isi??? 94
social impact