In this study the potential of combining high-resolution hydraulic tomographic and geophysical tomographic measurements to define site-specific relationships between geophysical and hydraulic parameters was investigated. We exploit the high-spatial resolution of hydraulic and geophysical tomographic images to define a representative and reliable site-specific relationship, if it exists, over an area, where geophysical and hydraulic tests are performed. The parameters involved in this study were: seismic P-wave velocity derived from seismic tomography; resistivity and electrical conductivity derived from electrical tomography (ERT); diffusivity, hydraulic conductivity and specific storage derived from hydraulic tomography. We derived a site-specific correlation function between the parameters P-wave velocity and diffusivity that shows the highest correlation of all hydraulic and geophysical parameter combinations. The transformation of the P-wave velocity field into a diffusivity field using the estimated site-specific correlation function allowed us to increase the significance of hydraulic tomographic as well as seismic tomographic measurements with respect to the spatial diffusivity distribution in the near subsurface.

In this study the potential of combining high-resolution hydraulic tomographic and geophysical tomographic measurements to define site-specific relationships between geophysical and hydraulic parameters was investigated. We exploit the high-spatial resolution of hydraulic and geophysical tomographic images to define a representative and reliable site-specific relationship, if it exists, over an area, where geophysical and hydraulic tests are performed. The parameters involved in this study were: seismic P-wave velocity derived from seismic tomography; resistivity and electrical conductivity derived from electrical tomography (ERT); diffusivity, hydraulic conductivity and specific storage derived from hydraulic tomography. We derived a site-specific correlation function between the parameters P-wave velocity and diffusivity that shows the highest correlation of all hydraulic and geophysical parameter combinations. The transformation of the P-wave velocity field into a diffusivity field using the estimated site-specific correlation function allowed us to increase the significance of hydraulic tomographic as well as seismic tomographic measurements with respect to the spatial diffusivity distribution in the near subsurface.

A field assessment of site-specific correlations between hydraulic and geophysical parameters

Bohm G.;Baradello L.;Affatato A.;
2013-01-01

Abstract

In this study the potential of combining high-resolution hydraulic tomographic and geophysical tomographic measurements to define site-specific relationships between geophysical and hydraulic parameters was investigated. We exploit the high-spatial resolution of hydraulic and geophysical tomographic images to define a representative and reliable site-specific relationship, if it exists, over an area, where geophysical and hydraulic tests are performed. The parameters involved in this study were: seismic P-wave velocity derived from seismic tomography; resistivity and electrical conductivity derived from electrical tomography (ERT); diffusivity, hydraulic conductivity and specific storage derived from hydraulic tomography. We derived a site-specific correlation function between the parameters P-wave velocity and diffusivity that shows the highest correlation of all hydraulic and geophysical parameter combinations. The transformation of the P-wave velocity field into a diffusivity field using the estimated site-specific correlation function allowed us to increase the significance of hydraulic tomographic as well as seismic tomographic measurements with respect to the spatial diffusivity distribution in the near subsurface.
2013
In this study the potential of combining high-resolution hydraulic tomographic and geophysical tomographic measurements to define site-specific relationships between geophysical and hydraulic parameters was investigated. We exploit the high-spatial resolution of hydraulic and geophysical tomographic images to define a representative and reliable site-specific relationship, if it exists, over an area, where geophysical and hydraulic tests are performed. The parameters involved in this study were: seismic P-wave velocity derived from seismic tomography; resistivity and electrical conductivity derived from electrical tomography (ERT); diffusivity, hydraulic conductivity and specific storage derived from hydraulic tomography. We derived a site-specific correlation function between the parameters P-wave velocity and diffusivity that shows the highest correlation of all hydraulic and geophysical parameter combinations. The transformation of the P-wave velocity field into a diffusivity field using the estimated site-specific correlation function allowed us to increase the significance of hydraulic tomographic as well as seismic tomographic measurements with respect to the spatial diffusivity distribution in the near subsurface.
Hydraulic tomography; Seismic tomography; ERT
File in questo prodotto:
File Dimensione Formato  
46_Torrate_NSG.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/1212
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact