We assessed the effect of sewage-derived materials on the structural and functional attributes of the soft-bottom macrofauna at an increasing distance from the entire diffusion area. Our results showed clear spatial changes of macrofaunal density and biomass along the distance gradient from the main outfall. High values of biodiversity, species composition, and species linked to organic enrichment near the duct suggested that moderate organic stress affected this community. The traits analysis abundance-based, compared to biomass-based one, distinguished most clearly sewage contamination conditions. Functional diversity displayed spatial patterns with higher values in the less impacted sites and was significantly related to species numbers and the biotic indices (like M-AMBI). This approach is ideal for detecting macrofaunal functional changes due to sewage contamination. Thus, we infer that traits analyses could offer great potential for environmental assessment and monitoring of coastal areas influenced by human activities.

Assessing the sewage discharge effects on soft-bottom macrofauna through traits-based approach

Nasi F.;Auriemma R.;Relitti F.;Bazzaro M.;Del Negro P.
2021

Abstract

We assessed the effect of sewage-derived materials on the structural and functional attributes of the soft-bottom macrofauna at an increasing distance from the entire diffusion area. Our results showed clear spatial changes of macrofaunal density and biomass along the distance gradient from the main outfall. High values of biodiversity, species composition, and species linked to organic enrichment near the duct suggested that moderate organic stress affected this community. The traits analysis abundance-based, compared to biomass-based one, distinguished most clearly sewage contamination conditions. Functional diversity displayed spatial patterns with higher values in the less impacted sites and was significantly related to species numbers and the biotic indices (like M-AMBI). This approach is ideal for detecting macrofaunal functional changes due to sewage contamination. Thus, we infer that traits analyses could offer great potential for environmental assessment and monitoring of coastal areas influenced by human activities.
Benthic health
Biological traits analysis
Coastal areas
Functional diversity
Macrofaunal community
Sewage discharge
Animals
Biodiversity
Biomass
Environmental Monitoring
Humans
Invertebrates
Ecosystem
Sewage
File in questo prodotto:
File Dimensione Formato  
Vesal_et_al_2021.pdf

non disponibili

Licenza: Copyright dell'editore
Dimensione 3.97 MB
Formato Adobe PDF
3.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/14663
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact