This research shows the results regarding the response to acidic condition of the sediment and Posidonia foraminiferal assemblages collected around the Panarea Island. The Aeolian Archipelago represents a natural laboratory and a much-promising study site for multidisciplinary marine research (carbon capture and storage, geochemistry of hydrothermal fluids and ocean acidification vs. benthic and pelagic organisms). The variability and the complexity of the interaction of the ecological factors characterizing extreme environments such as shallow hydrothermal vents did not allow us to carry out a real pattern of biota responses in situ, differently from those observed under controlled laboratory conditions. However, the study provides new insights into foraminiferal response to increasing ocean acidification (OA) in terms of biodiversity, faunal density, specific composition of the assemblages and morphological variations of the shells. The study highlights how the foraminiferal response to different pH conditions can change depending on different environmental conditions and microhabitats (sediments, Posidonia leaves and rhizomes). Indeed, mineral sediments were more impacted by acidification, whereas Posidonia microhabitats, thanks to their buffer effect, can offer "refugia" and more mitigated acidic environment. At species level, rosalinids and agglutinated group represent the most abundant taxa showing the most specific resilience and capability to face acidic conditions.

Potential Resilience to Ocean Acidification of Benthic Foraminifers Living in Posidonia oceanica Meadows: The Case of the Shallow Venting Site of Panarea

Conti A.;Esposito V.;De Vittor C.;
2022-01-01

Abstract

This research shows the results regarding the response to acidic condition of the sediment and Posidonia foraminiferal assemblages collected around the Panarea Island. The Aeolian Archipelago represents a natural laboratory and a much-promising study site for multidisciplinary marine research (carbon capture and storage, geochemistry of hydrothermal fluids and ocean acidification vs. benthic and pelagic organisms). The variability and the complexity of the interaction of the ecological factors characterizing extreme environments such as shallow hydrothermal vents did not allow us to carry out a real pattern of biota responses in situ, differently from those observed under controlled laboratory conditions. However, the study provides new insights into foraminiferal response to increasing ocean acidification (OA) in terms of biodiversity, faunal density, specific composition of the assemblages and morphological variations of the shells. The study highlights how the foraminiferal response to different pH conditions can change depending on different environmental conditions and microhabitats (sediments, Posidonia leaves and rhizomes). Indeed, mineral sediments were more impacted by acidification, whereas Posidonia microhabitats, thanks to their buffer effect, can offer "refugia" and more mitigated acidic environment. At species level, rosalinids and agglutinated group represent the most abundant taxa showing the most specific resilience and capability to face acidic conditions.
2022
benthic foraminifera
CO2 emission
ocean acidification
Panarea Island (Tyrrhenian Sea)
File in questo prodotto:
File Dimensione Formato  
Di Bella_et_al_2022_geosciences-12-00184-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/14762
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact