The role of herbivorous fish in threatening marine forests of temperate seas has been generally overlooked. Only recently, the scientific community has highlighted that high fish herbivory can lead to regime shifts from canopy-forming algae to less complex turf communities. Here, we present an innovative herbivorous fish deterrent device (DeFish), which can be used for conservation and restoration of marine forests. Compared to most traditional fish exclusion systems, such as cages, the DeFish system does not need regular cleaning and maintenance, making it more cost-efficient. Resistance of DeFish was tested by installing prototypes at different depths in the French Riviera and in Montenegro: more than 60% of the devices endured several years without maintenance, even if most of them were slightly damaged in the exposed site in Montenegro. The efficacy of DeFish in limiting fish herbivory was tested by an exclusion experiment on Cystoseira amentacea in the French Riviera. In a few months, the number of fish bite marks on the seaweed was decreased, causing a consequent increase in algal length. The device here presented has been conceived for Mediterranean canopy-forming algae, but the same concept can be applied to other species vulnerable to fish herbivory, such as kelps or seagrasses. In particular, the DeFish design could be improved using more robust and biodegradable materials. Innovative engineering systems, such as DeFish, are expected to become useful tools in the conservation and restoration of marine forests, to complement other practices including active reforestation, herbivore regulation, and regular monitoring of their status.

Optimizing canopy‐forming algae conservation and restoration with a new herbivorous fish deterrent device

Gianni F.
;
Laurent M.;
2020-01-01

Abstract

The role of herbivorous fish in threatening marine forests of temperate seas has been generally overlooked. Only recently, the scientific community has highlighted that high fish herbivory can lead to regime shifts from canopy-forming algae to less complex turf communities. Here, we present an innovative herbivorous fish deterrent device (DeFish), which can be used for conservation and restoration of marine forests. Compared to most traditional fish exclusion systems, such as cages, the DeFish system does not need regular cleaning and maintenance, making it more cost-efficient. Resistance of DeFish was tested by installing prototypes at different depths in the French Riviera and in Montenegro: more than 60% of the devices endured several years without maintenance, even if most of them were slightly damaged in the exposed site in Montenegro. The efficacy of DeFish in limiting fish herbivory was tested by an exclusion experiment on Cystoseira amentacea in the French Riviera. In a few months, the number of fish bite marks on the seaweed was decreased, causing a consequent increase in algal length. The device here presented has been conceived for Mediterranean canopy-forming algae, but the same concept can be applied to other species vulnerable to fish herbivory, such as kelps or seagrasses. In particular, the DeFish design could be improved using more robust and biodegradable materials. Innovative engineering systems, such as DeFish, are expected to become useful tools in the conservation and restoration of marine forests, to complement other practices including active reforestation, herbivore regulation, and regular monitoring of their status.
2020
Cystoseira amentacea, ecological restoration,fish, herbivore exclusion, herbivory, macroalgae, marine forests
File in questo prodotto:
File Dimensione Formato  
Gianni et al 2020.pdf

accesso aperto

Descrizione: articolo peer-reviewed
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 2.7 MB
Formato Adobe PDF
2.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/15230
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact