The Mar Piccolo is a semi-enclosed basin subject to different natural and anthropogenic stressors. In order to better understand plankton dynamics and preferential carbon pathways within the planktonic trophic web, an integrated approach was adopted for the first time by examining all trophic levels (virioplankton, the heterotrophic and phototrophic fractions of pico-, nano- and microplankton, as well as mesozooplankton). Plankton abundance and biomass were investigated during four surveys in the period 2013-2014. Beside unveiling the dynamics of different plankton groups in the Mar Piccolo, the study revealed that high portion of the plankton carbon (C) pool was constituted by small-sized (< 2 mu m) planktonic fractions. The prevalence of small-sized species within micro- and mesozooplankton communities was observed as well. The succession of planktonic communities was clearly driven by the seasonality, i.e. by the nutrient availability and physical features of the water column. Our hypothesis is that beside the 'bottom-up' control and the grazing pressure, inferred from the C pools of different plankton groups, the presence of mussel farms in the Mar Piccolo exerts a profound impact on plankton communities, not only due to the important sequestration of the plankton biomass but also by strongly influencing its structure.

The Mar Piccolo is a semi-enclosed basin subject to different natural and anthropogenic stressors. In order to better understand plankton dynamics and preferential carbon pathways within the planktonic trophic web, an integrated approach was adopted for the first time by examining all trophic levels (virioplankton, the heterotrophic and phototrophic fractions of pico-, nano- and microplankton, as well as mesozooplankton). Plankton abundance and biomass were investigated during four surveys in the period 2013–2014. Beside unveiling the dynamics of different plankton groups in the Mar Piccolo, the study revealed that high portion of the plankton carbon (C) pool was constituted by small-sized (<2 μm) planktonic fractions. The prevalence of small-sized species within micro- and mesozooplankton communities was observed as well. The succession of planktonic communities was clearly driven by the seasonality, i.e. by the nutrient availability and physical features of the water column. Our hypothesis is that beside the ‘bottom-up’ control and the grazing pressure, inferred from the C pools of different plankton groups, the presence of mussel farms in the Mar Piccolo exerts a profound impact on plankton communities, not only due to the important sequestration of the plankton biomass but also by strongly influencing its structure.

‘End to end’ planktonic trophic web and its implications for the mussel farms in the Mar Piccolo of Taranto (Ionian Sea, Italy)

Karuza A.;Monti M.;Di Poi E.;Auriemma R.;Cibic T.;Del Negro P.
2016-01-01

Abstract

The Mar Piccolo is a semi-enclosed basin subject to different natural and anthropogenic stressors. In order to better understand plankton dynamics and preferential carbon pathways within the planktonic trophic web, an integrated approach was adopted for the first time by examining all trophic levels (virioplankton, the heterotrophic and phototrophic fractions of pico-, nano- and microplankton, as well as mesozooplankton). Plankton abundance and biomass were investigated during four surveys in the period 2013–2014. Beside unveiling the dynamics of different plankton groups in the Mar Piccolo, the study revealed that high portion of the plankton carbon (C) pool was constituted by small-sized (<2 μm) planktonic fractions. The prevalence of small-sized species within micro- and mesozooplankton communities was observed as well. The succession of planktonic communities was clearly driven by the seasonality, i.e. by the nutrient availability and physical features of the water column. Our hypothesis is that beside the ‘bottom-up’ control and the grazing pressure, inferred from the C pools of different plankton groups, the presence of mussel farms in the Mar Piccolo exerts a profound impact on plankton communities, not only due to the important sequestration of the plankton biomass but also by strongly influencing its structure.
2016
The Mar Piccolo is a semi-enclosed basin subject to different natural and anthropogenic stressors. In order to better understand plankton dynamics and preferential carbon pathways within the planktonic trophic web, an integrated approach was adopted for the first time by examining all trophic levels (virioplankton, the heterotrophic and phototrophic fractions of pico-, nano- and microplankton, as well as mesozooplankton). Plankton abundance and biomass were investigated during four surveys in the period 2013-2014. Beside unveiling the dynamics of different plankton groups in the Mar Piccolo, the study revealed that high portion of the plankton carbon (C) pool was constituted by small-sized (&lt; 2 mu m) planktonic fractions. The prevalence of small-sized species within micro- and mesozooplankton communities was observed as well. The succession of planktonic communities was clearly driven by the seasonality, i.e. by the nutrient availability and physical features of the water column. Our hypothesis is that beside the 'bottom-up' control and the grazing pressure, inferred from the C pools of different plankton groups, the presence of mussel farms in the Mar Piccolo exerts a profound impact on plankton communities, not only due to the important sequestration of the plankton biomass but also by strongly influencing its structure.
File in questo prodotto:
File Dimensione Formato  
2016_Environ Sci Pollut Res_End to end’ planktonic trophic web and its implications.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/1532
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact