This paper presents correlations derived by linear regression analysis of seismic velocities VP and VS and elastic moduli EP and ES with temperature in Los Humeros superhot (SHGS) and Acoculco enhanced (EGS) geothermal systems at depths down to 3 km below the surface and temperatures up to approximately 400◦C. In Los Humeros, the seismic velocity models were derived from the inversion of legacy active seismic survey data acquired in 1998, as well as from passive seismic monitoring and ambient seismic noise interferometry carried out during 2017–2019 by the GEMex consortium. In the Acoculco EGS, ambient seismic noise data were used. Steady-state formation temperatures were re-evaluated during and after the end of the GEMex project using measurements provided as a courtesy of the Federal Electricity Commission of Mexico (CFE). The density data needed for the calculation of elastic moduli were provided by the GEMex consortium, as derived from the inversion of regional and local gravity surveys. The analysis indicated that statistically significant correlations of seismic parameters to temperature exist in the vertical direction, namely exponential in Los Humeros superhot and logarithmic in Acoculco EGS, but no correlation was evident in the horizontal direction. This result suggests an indirect relationship among the considered variables due to interdependence on other parameters, such as pressure and vapor saturation. As the analysis was performed using only data obtained from sensing-at-surface methods, without direct geophysical calibration at depth, a distributed fiber-optic seismic and temperature sensing system at both surface and downhole is proposed for active-source and passive seismic monitoring, and seismic-while-drilling by the drill-bit source is considered for reverse vertical seismic profile (RVSP) recording whenever possible for future high-temperature geothermal applications.

Correlations of Seismic Velocities and Elastic Moduli with Temperature in Superhot and Enhanced Geothermal Systems

Farina B.;Barison E.
2022-01-01

Abstract

This paper presents correlations derived by linear regression analysis of seismic velocities VP and VS and elastic moduli EP and ES with temperature in Los Humeros superhot (SHGS) and Acoculco enhanced (EGS) geothermal systems at depths down to 3 km below the surface and temperatures up to approximately 400◦C. In Los Humeros, the seismic velocity models were derived from the inversion of legacy active seismic survey data acquired in 1998, as well as from passive seismic monitoring and ambient seismic noise interferometry carried out during 2017–2019 by the GEMex consortium. In the Acoculco EGS, ambient seismic noise data were used. Steady-state formation temperatures were re-evaluated during and after the end of the GEMex project using measurements provided as a courtesy of the Federal Electricity Commission of Mexico (CFE). The density data needed for the calculation of elastic moduli were provided by the GEMex consortium, as derived from the inversion of regional and local gravity surveys. The analysis indicated that statistically significant correlations of seismic parameters to temperature exist in the vertical direction, namely exponential in Los Humeros superhot and logarithmic in Acoculco EGS, but no correlation was evident in the horizontal direction. This result suggests an indirect relationship among the considered variables due to interdependence on other parameters, such as pressure and vapor saturation. As the analysis was performed using only data obtained from sensing-at-surface methods, without direct geophysical calibration at depth, a distributed fiber-optic seismic and temperature sensing system at both surface and downhole is proposed for active-source and passive seismic monitoring, and seismic-while-drilling by the drill-bit source is considered for reverse vertical seismic profile (RVSP) recording whenever possible for future high-temperature geothermal applications.
2022
elastic moduli
rock density
seismic velocities
temperature
File in questo prodotto:
File Dimensione Formato  
Mendrinos et al_2022.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/15326
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact