Sympagic microzooplankton were studied during late winter in the northern Weddell Sea for diversity, abundance and carbon biomass. Ice cores were collected on an ice floe along three dive transects and seawater was taken from under the ice through the central dive hole from which all transects were connected. The areal and vertical microzooplankton distributions in the ice and water were compared. Abundance (max. 1300 ind. l-1) and biomass (max. 28.2 μg C l-1) were high in the ice cores and low in the water below the sea ice (max. 19 ind. l-1, 0.15 μg C l-1, respectively). The highest abundances were observed in the bottom 10 cm of the ice cores. The microzooplankton community within the sea ice comprised mainly aloricate ciliates, foraminifers and micrometazoans. In winter, microzooplankton represent an important fraction of the sympagic community in the Antarctic sea ice. They can potentially control microalgal production and contribute to particulate organic carbon concentrations when released into the water column during the ice melt in spring. Continued reduction of the sea ice may undermine the roles of microzooplankton, leading to a reduction or complete loss of diversity, abundance and biomass of these sympagic protists.

Microzooplankton composition in the winter sea ice of the Weddell Sea

Diociaiuti T.;
2017-01-01

Abstract

Sympagic microzooplankton were studied during late winter in the northern Weddell Sea for diversity, abundance and carbon biomass. Ice cores were collected on an ice floe along three dive transects and seawater was taken from under the ice through the central dive hole from which all transects were connected. The areal and vertical microzooplankton distributions in the ice and water were compared. Abundance (max. 1300 ind. l-1) and biomass (max. 28.2 μg C l-1) were high in the ice cores and low in the water below the sea ice (max. 19 ind. l-1, 0.15 μg C l-1, respectively). The highest abundances were observed in the bottom 10 cm of the ice cores. The microzooplankton community within the sea ice comprised mainly aloricate ciliates, foraminifers and micrometazoans. In winter, microzooplankton represent an important fraction of the sympagic community in the Antarctic sea ice. They can potentially control microalgal production and contribute to particulate organic carbon concentrations when released into the water column during the ice melt in spring. Continued reduction of the sea ice may undermine the roles of microzooplankton, leading to a reduction or complete loss of diversity, abundance and biomass of these sympagic protists.
File in questo prodotto:
File Dimensione Formato  
Montietal2017.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 774.27 kB
Formato Adobe PDF
774.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/1589
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact