In this study, a biogeochemical model of the mercury cycle is applied to the Marano-Grado Lagoon (North Adriatic Sea, Italy) to 1) integrate the ensemble of disconnected and snap shot measurements collected over the last decade into a common and coherent framework, 2) assess the concentration of mercury species (Hg-II, MeHg, Hg-0) in water, sediment and particulates, and 3) quantify the mercury fluxes and budgets within the lagoon and among the lagoon, the atmosphere and the Adriatic Sea. As a result of long-term industrial and natural contamination, the Marano-Grado Lagoon is a hot spot of mercury contamination in the Mediterranean Region. Several monitoring activities have been undertaken to evaluate the environmental impacts and to better understand mercury cycling in this region. We used the results from these studies to build a mercury biogeochemical model and assess its ability to accurately predict mercury concentrations and fluxes. The results indicate that 1) the lagoon is a contaminated site, with water and sediment concentrations of Hg and MeHg higher than those of comparable environments; 2) there is substantial production of MeHg favored high productivity, occurrence of seasonal anoxia, and shallow conditions; and 3) the lagoon is a source of mercury contamination for the Mediterranean Sea, contributing to about 5% of the total Hg-T load. Research also indicates that the most critical shortcoming of the currently available data sets is the lack of complete synoptic measurements, even for short time periods. Future research programs must also include information on the photo-transformation rates, such as of photo-reduction, photo-oxidation and photo-demethylation. (C) 2015 The Authors. Published by Elsevier B.V.

A comprehensive assessment of the mercury budget in the Marano-Grado Lagoon (Adriatic Sea) using a combined observational modeling approach

Melaku Canu D.;Rosati G.;Solidoro C.;
2015-01-01

Abstract

In this study, a biogeochemical model of the mercury cycle is applied to the Marano-Grado Lagoon (North Adriatic Sea, Italy) to 1) integrate the ensemble of disconnected and snap shot measurements collected over the last decade into a common and coherent framework, 2) assess the concentration of mercury species (Hg-II, MeHg, Hg-0) in water, sediment and particulates, and 3) quantify the mercury fluxes and budgets within the lagoon and among the lagoon, the atmosphere and the Adriatic Sea. As a result of long-term industrial and natural contamination, the Marano-Grado Lagoon is a hot spot of mercury contamination in the Mediterranean Region. Several monitoring activities have been undertaken to evaluate the environmental impacts and to better understand mercury cycling in this region. We used the results from these studies to build a mercury biogeochemical model and assess its ability to accurately predict mercury concentrations and fluxes. The results indicate that 1) the lagoon is a contaminated site, with water and sediment concentrations of Hg and MeHg higher than those of comparable environments; 2) there is substantial production of MeHg favored high productivity, occurrence of seasonal anoxia, and shallow conditions; and 3) the lagoon is a source of mercury contamination for the Mediterranean Sea, contributing to about 5% of the total Hg-T load. Research also indicates that the most critical shortcoming of the currently available data sets is the lack of complete synoptic measurements, even for short time periods. Future research programs must also include information on the photo-transformation rates, such as of photo-reduction, photo-oxidation and photo-demethylation. (C) 2015 The Authors. Published by Elsevier B.V.
2015
Budget; Lagoon; Mercury hot spot; Mercury modeling; Transformation; Transport; WASP7; Oceanography; Chemistry (all); Environmental Chemistry; Water Science and Technology
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0304420315300591-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/1604
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact