This paper describes the main findings of the project HYPSTHER (HYbrid ground motion prediction equations for PSha purposes: the study case of souTHERn Italy; supported by the Italian Institute of Geophysics and Volcanology). The goal of the project is to develop a methodological approach to retrieve hybrid Ground Motion Prediction Equations (GMPEs) based on integration of recorded and synthetic data. This methodology was applied to the study area of southern Italy, focusing on the southern Calabria and Sicily regions. The target area was chosen due to the expected high seismic hazard levels, despite the low seismic activity in recent decades. In addition, along the coast of the study area, there are many critical infrastructures, such as chemical plants, refineries, and large ports, which strongly increase the risk of technological accidents induced by earthquakes. Through the synthetic data, the predictions of the hybrid GMPEs have been improved under near-field conditions, with respect to empirical models for moderate to large earthquakes. Attenuation at distances greater than 50 km is instead controlled by the empirical data, because attenuation is faster with distance. The aleatory variability of the hybrid models has strong impact on probabilistic seismic hazard assessment, as it is lower than the sigma of the empirical GMPEs. The use of the hybrid GMPEs specific for the study area can produce remarkable reductions in hazard levels for long-return periods, mainly due to changes in median predictions and reduction of the aleatory variability.

Hybrid GMPEs for Region-Specific PSHA in Southern Italy

Santulin M.;
2018-01-01

Abstract

This paper describes the main findings of the project HYPSTHER (HYbrid ground motion prediction equations for PSha purposes: the study case of souTHERn Italy; supported by the Italian Institute of Geophysics and Volcanology). The goal of the project is to develop a methodological approach to retrieve hybrid Ground Motion Prediction Equations (GMPEs) based on integration of recorded and synthetic data. This methodology was applied to the study area of southern Italy, focusing on the southern Calabria and Sicily regions. The target area was chosen due to the expected high seismic hazard levels, despite the low seismic activity in recent decades. In addition, along the coast of the study area, there are many critical infrastructures, such as chemical plants, refineries, and large ports, which strongly increase the risk of technological accidents induced by earthquakes. Through the synthetic data, the predictions of the hybrid GMPEs have been improved under near-field conditions, with respect to empirical models for moderate to large earthquakes. Attenuation at distances greater than 50 km is instead controlled by the empirical data, because attenuation is faster with distance. The aleatory variability of the hybrid models has strong impact on probabilistic seismic hazard assessment, as it is lower than the sigma of the empirical GMPEs. The use of the hybrid GMPEs specific for the study area can produce remarkable reductions in hazard levels for long-return periods, mainly due to changes in median predictions and reduction of the aleatory variability.
File in questo prodotto:
File Dimensione Formato  
Hybrid-GMPEs-for-regionspecific-PSHA-in-southern-Italy2018Geosciences-SwitzerlandOpen-Access.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 6.19 MB
Formato Adobe PDF
6.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/1789
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact