The palaeontological, geochemical and mineralogical records of core GNS84-C106 were analysed in order to reconstruct palaeohydrological changes and palaeoproductivity patterns in the Gulf of Salerno for the last 34 kyr. This approach, including compositional analysis of planktonic and benthic assemblages, gave an insight into the relationships between continental, sea surface and bottom environmental changes. The main source of variability of planktonic and benthic assemblages is related respectively to sea surface temperature and palaeobathymetry. Interrelated changes in surface salinity, nutrients, density gradient in the water column and organic fluxes at the bottom act as a secondary factor controlling the composition of both planktonic and benthic assemblages. The highest palaeoproductivity rates were reached during an interval spanning from late glacial to Middle Holocene, in conditions of enhanced continental run-off. During the Early and Middle Holocene, reduced surface salinity and density stratification were also coupled with the development of a deep chlorophyll maximum and enhanced flux or organic matter at the bottom. From about 6.5 kyr B.P. onward, a sharp reduction in palaeoproductivity took place, coupled with an increase in surface salinities. (C) 2009 Elsevier Masson SAS. All rights reserved.

Surface-bottom relationships in the Gulf of Salerno (Tyrrhenian Sea) over the last 34 kyr: Compositional data analysis of palaeontological proxies and geochemical evidence

Caffau M.;
2009-01-01

Abstract

The palaeontological, geochemical and mineralogical records of core GNS84-C106 were analysed in order to reconstruct palaeohydrological changes and palaeoproductivity patterns in the Gulf of Salerno for the last 34 kyr. This approach, including compositional analysis of planktonic and benthic assemblages, gave an insight into the relationships between continental, sea surface and bottom environmental changes. The main source of variability of planktonic and benthic assemblages is related respectively to sea surface temperature and palaeobathymetry. Interrelated changes in surface salinity, nutrients, density gradient in the water column and organic fluxes at the bottom act as a secondary factor controlling the composition of both planktonic and benthic assemblages. The highest palaeoproductivity rates were reached during an interval spanning from late glacial to Middle Holocene, in conditions of enhanced continental run-off. During the Early and Middle Holocene, reduced surface salinity and density stratification were also coupled with the development of a deep chlorophyll maximum and enhanced flux or organic matter at the bottom. From about 6.5 kyr B.P. onward, a sharp reduction in palaeoproductivity took place, coupled with an increase in surface salinities. (C) 2009 Elsevier Masson SAS. All rights reserved.
2009
Tyrrhenian Sea
Late Quaternary
Geochemistry
Palaeoproductivity
Compositional data analysis
File in questo prodotto:
File Dimensione Formato  
Surface–bottom relationships in the Gulf of Salerno (Tyrrhenian Sea).pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/18193
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
social impact