Several grounding zone wedges were left on the floor and flanks of Prydz Channel in western Prydz Bay by the Lambert Glacier during the last glacial cycle. Seismic profiles indicate that vertical accretion at the glacier bed was the most important depositional process in forming the wedges, rather than progradation by sediment gravity flows. Sidescan sonographs reveal extensive development of flutes on the sea floor inshore from the wedges, indicating deformable bed conditions beneath the ice. The region inshore of the east Prydz Channel wedge features extensive dune fields formed by currents flowing towards the grounding zone. This orientation is consistent with models of circulation beneath ice shelves in which melting at the grounding line generates plumes of fresher water that rise along the base of the ice shelf, entraining sea water into a circulation cell. The Lambert Deep is surrounded by a large composite ridge of glacial sediments. Internal reflectors suggest formation mostly by subglacial accretion. The sea floor in the Lambert Deep lacks dune fields and shows evidence of interspersed subglacial cavities and grounded ice beneath the glacier. The absence of bedforms reflects sea floor topography that would have inhibited the formation of energetic melt water-driven circulation.

Ice shelf grounding zone features of Western Prydz Bay, Antarctica: Sedimentary processes from seismic and sidescan images

De Santis L.;
1999-01-01

Abstract

Several grounding zone wedges were left on the floor and flanks of Prydz Channel in western Prydz Bay by the Lambert Glacier during the last glacial cycle. Seismic profiles indicate that vertical accretion at the glacier bed was the most important depositional process in forming the wedges, rather than progradation by sediment gravity flows. Sidescan sonographs reveal extensive development of flutes on the sea floor inshore from the wedges, indicating deformable bed conditions beneath the ice. The region inshore of the east Prydz Channel wedge features extensive dune fields formed by currents flowing towards the grounding zone. This orientation is consistent with models of circulation beneath ice shelves in which melting at the grounding line generates plumes of fresher water that rise along the base of the ice shelf, entraining sea water into a circulation cell. The Lambert Deep is surrounded by a large composite ridge of glacial sediments. Internal reflectors suggest formation mostly by subglacial accretion. The sea floor in the Lambert Deep lacks dune fields and shows evidence of interspersed subglacial cavities and grounded ice beneath the glacier. The absence of bedforms reflects sea floor topography that would have inhibited the formation of energetic melt water-driven circulation.
1999
Amery Ice Shelf
Grounding zone
Prydz Bay
Sedimentology
Seismic
Sidescan
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/18322
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? ND
social impact