Changes in the characteristics of austral winter (June–July–August) synoptic activity in three domains (Africa, Australia and South America) of the extratropical Southern Hemisphere projected with the Regional Climate Model version 4 (RegCM4) are presented. The model is nested in three global climate models (GCMs) from the Coupled Model Intercomparison Project phase 5 (CMIP5) under the Representative Concentration Pathway 8.5. The model grid spacing is 25 km and the simulations cover the period 1970–2100. Synoptic activity is analyzed using both Eulerian and Lagrangian approaches. The Eulerian analysis shows an increase of the synoptic activity south of 40° S in the RegCM4 and GCMs ensembles for the future (2080–2099) compared to the present (1995–2014), but this signal does not necessarily indicate an increase in the cyclone frequency since it includes cyclonic and anticyclonic features. The Lagrangian analysis, however, indicates a decrease in the frequency of cyclones, with a positive tendency towards stronger systems, although the latter is not statistically significant at 95% confidence level. Lifetime, traveled distance and mean speed of the cyclones do not present statistically significant changes in the future climate. On the other hand, a significant increase in both intensity and extension of areas affected by precipitation associated with cyclones is found. As a consequence, there is a statistically significant trend of individual cyclones to produce more rainfall in the future.

Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach

Reale M.;
2021-01-01

Abstract

Changes in the characteristics of austral winter (June–July–August) synoptic activity in three domains (Africa, Australia and South America) of the extratropical Southern Hemisphere projected with the Regional Climate Model version 4 (RegCM4) are presented. The model is nested in three global climate models (GCMs) from the Coupled Model Intercomparison Project phase 5 (CMIP5) under the Representative Concentration Pathway 8.5. The model grid spacing is 25 km and the simulations cover the period 1970–2100. Synoptic activity is analyzed using both Eulerian and Lagrangian approaches. The Eulerian analysis shows an increase of the synoptic activity south of 40° S in the RegCM4 and GCMs ensembles for the future (2080–2099) compared to the present (1995–2014), but this signal does not necessarily indicate an increase in the cyclone frequency since it includes cyclonic and anticyclonic features. The Lagrangian analysis, however, indicates a decrease in the frequency of cyclones, with a positive tendency towards stronger systems, although the latter is not statistically significant at 95% confidence level. Lifetime, traveled distance and mean speed of the cyclones do not present statistically significant changes in the future climate. On the other hand, a significant increase in both intensity and extension of areas affected by precipitation associated with cyclones is found. As a consequence, there is a statistically significant trend of individual cyclones to produce more rainfall in the future.
2021
CORDEX-CORE
Cyclone tracking scheme
Cyclones
Extratropical southern hemisphere
Precipitation
RegCM4
File in questo prodotto:
File Dimensione Formato  
Future_changes_in_the_wintertime_cyclonic_activity.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/18499
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 19
social impact