Anthropogenic stressors are predicted to alter biodiversity and ecosystem functioning worldwide. However, scaling up from species to ecosystem responses poses a challenge, as species and functional groups can exhibit different capacities to adapt, acclimate, and compensate under changing environments. We used a naturally acidified seagrass ecosystem (the endemic Mediterranean Posidonia oceanica) as a model system to examine how ocean acidification (OA) modifies the community structure and functioning of plant detritivores, which play vital roles in the coastal nutrient cycling and food web dynamics. In seagrass beds associated with volcanic CO2 vents (Ischia, Italy), we quantified the effects of OA on seagrass decomposition by deploying litterbags in three distinct pH zones (i.e., ambient, low, extreme low pH), which differed in the mean and variability of seawater pH. We replicated the study in two discrete vents for 117 days (litterbags sampled on day 5, 10, 28, 55, and 117). Acidifi...
Resilient consumers accelerate the plant decomposition in a naturally acidified seagrass ecosystem
Gambi M. C.;
2022-01-01
Abstract
Anthropogenic stressors are predicted to alter biodiversity and ecosystem functioning worldwide. However, scaling up from species to ecosystem responses poses a challenge, as species and functional groups can exhibit different capacities to adapt, acclimate, and compensate under changing environments. We used a naturally acidified seagrass ecosystem (the endemic Mediterranean Posidonia oceanica) as a model system to examine how ocean acidification (OA) modifies the community structure and functioning of plant detritivores, which play vital roles in the coastal nutrient cycling and food web dynamics. In seagrass beds associated with volcanic CO2 vents (Ischia, Italy), we quantified the effects of OA on seagrass decomposition by deploying litterbags in three distinct pH zones (i.e., ambient, low, extreme low pH), which differed in the mean and variability of seawater pH. We replicated the study in two discrete vents for 117 days (litterbags sampled on day 5, 10, 28, 55, and 117). Acidifi...File | Dimensione | Formato | |
---|---|---|---|
Global Change Biology - 2022 - Lee - Resilient consumers accelerate the plant decomposition in a naturally acidified.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
9.26 MB
Formato
Adobe PDF
|
9.26 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.