The Northern Hemisphere midlatitude winter atmospheric variability simulated by Coupled Model Intercomparison Project phase 5 (CMIP5) models is analyzed at spatial and temporal scales corresponding to the growth of baroclinic eddies and planetary waves. We use a global scalar metric of the wave energy frequency-wave number spectrum to identify potential improvements of the CMIP5 ensemble compared to previous coordinated model simulations (CMIP3). We also evaluate whether CMIP5 models predict future shifts in the global baroclinic eddies and planetary-scale wave activities. With respect to CMIP3, no significant improvements are found, thereby suggesting that no significant breakthrough in the modeling of the climate system has been hit over the last few years. No significant changes are found in RCP4.5 scenarios for the selected metric of the baroclinic and planetary-scale atmospheric flows, thus indicating that localized changes with potential societal impact might not be related to changes in key fundamental properties of the atmospheric circulation.Key Points Performance of CMIP5 in describing global statistics of the atmosphere Biases larger than 20% in most cases No change in the statistics of the baroclinic and planetary scale motions

Northern Hemisphere winter midlatitude atmospheric variability in CMIP5 models

Di Biagio V.;
2014-01-01

Abstract

The Northern Hemisphere midlatitude winter atmospheric variability simulated by Coupled Model Intercomparison Project phase 5 (CMIP5) models is analyzed at spatial and temporal scales corresponding to the growth of baroclinic eddies and planetary waves. We use a global scalar metric of the wave energy frequency-wave number spectrum to identify potential improvements of the CMIP5 ensemble compared to previous coordinated model simulations (CMIP3). We also evaluate whether CMIP5 models predict future shifts in the global baroclinic eddies and planetary-scale wave activities. With respect to CMIP3, no significant improvements are found, thereby suggesting that no significant breakthrough in the modeling of the climate system has been hit over the last few years. No significant changes are found in RCP4.5 scenarios for the selected metric of the baroclinic and planetary-scale atmospheric flows, thus indicating that localized changes with potential societal impact might not be related to changes in key fundamental properties of the atmospheric circulation.Key Points Performance of CMIP5 in describing global statistics of the atmosphere Biases larger than 20% in most cases No change in the statistics of the baroclinic and planetary scale motions
File in questo prodotto:
File Dimensione Formato  
Geophysical Research Letters - 2014 - Di Biagio - Northern Hemisphere winter midlatitude atmospheric variability in CMIP5.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 395.46 kB
Formato Adobe PDF
395.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/18547
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact