Highly selective fishing has the potential to permanently change the characteristics within a population and could drive the decline of genetic diversity. European lobster is an intensively fished crustacean species in the Adriatic Sea which reaches high market value. Since knowledge of population structure and dynamics is important for effective fisheries management, in this study, we used 14 neutral microsatellites loci and partial mitochondrial COI region sequencing to explore population connectivity and genetic structure by comparing samples from the Adriatic Sea and the adjacent basins of the Mediterranean Sea. The obtained results suggest that neutral genetic diversity has not been significantly affected by decrease in population size due to overfishing, habitat degradation and other anthropogenic activities. Global genetic differentiation across all populations was low (F-ST = 0.0062). Populations from the Adriatic Sea were panmictic, while genetic differentiation was found among populations from different Mediterranean basins. Observed gene flow for European lobster suggest that populations in the north eastern Adriatic act as a source for surrounding areas, emphasizing the need to protect these populations by establishing interconnected MPAs that will be beneficial for both fisheries and conservation management.

Population Genetic Structure and Connectivity of the European Lobster Homarus gammarus in the Adriatic and Mediterranean Seas

Celic I.;
2020-01-01

Abstract

Highly selective fishing has the potential to permanently change the characteristics within a population and could drive the decline of genetic diversity. European lobster is an intensively fished crustacean species in the Adriatic Sea which reaches high market value. Since knowledge of population structure and dynamics is important for effective fisheries management, in this study, we used 14 neutral microsatellites loci and partial mitochondrial COI region sequencing to explore population connectivity and genetic structure by comparing samples from the Adriatic Sea and the adjacent basins of the Mediterranean Sea. The obtained results suggest that neutral genetic diversity has not been significantly affected by decrease in population size due to overfishing, habitat degradation and other anthropogenic activities. Global genetic differentiation across all populations was low (F-ST = 0.0062). Populations from the Adriatic Sea were panmictic, while genetic differentiation was found among populations from different Mediterranean basins. Observed gene flow for European lobster suggest that populations in the north eastern Adriatic act as a source for surrounding areas, emphasizing the need to protect these populations by establishing interconnected MPAs that will be beneficial for both fisheries and conservation management.
2020
fisheries
gene flow
genetic diversity
microsatellites
mtDNA
population structure
File in questo prodotto:
File Dimensione Formato  
fgene-11-576023.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 3.43 MB
Formato Adobe PDF
3.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/19082
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact