A major earthquake, with magnitude Mw 7.3, struck Sarpol Zahab (Kermanshah province, Iran) on November 12, 2017, causing extended damage and casualties. The epicenter was located in the Northwestern part of the Zagros mountain range, an active belt originated by the Arabia-Eurasia collision. We explore seismicity preceding this earthquake, by using the Iranian Seismological Center instrumental earthquake catalog (IGTU), with the aim to identify possible anomalies in background seismicity that can be related with this and other future large events. For this purpose, we used a method for intermediate term forecasts of large earthquakes, namely the Region Time Length (RTL) algorithm, which analyzes declustered catalogs and is sensitive to quiescences that may precede major earthquakes. RTL has been progressively refined and has been applied in several regions worldwide during the last decades. To decluster the earthquake catalog we used a quite novel approach, based on the nearest-neigbou...

A seismic quiescence before the 2017 Mw 7.3 Sarpol Zahab (Iran) earthquake: Detection and analysis by improved RTL method

Gentili S.;Peresan A.;
2019-01-01

Abstract

A major earthquake, with magnitude Mw 7.3, struck Sarpol Zahab (Kermanshah province, Iran) on November 12, 2017, causing extended damage and casualties. The epicenter was located in the Northwestern part of the Zagros mountain range, an active belt originated by the Arabia-Eurasia collision. We explore seismicity preceding this earthquake, by using the Iranian Seismological Center instrumental earthquake catalog (IGTU), with the aim to identify possible anomalies in background seismicity that can be related with this and other future large events. For this purpose, we used a method for intermediate term forecasts of large earthquakes, namely the Region Time Length (RTL) algorithm, which analyzes declustered catalogs and is sensitive to quiescences that may precede major earthquakes. RTL has been progressively refined and has been applied in several regions worldwide during the last decades. To decluster the earthquake catalog we used a quite novel approach, based on the nearest-neigbou...
File in questo prodotto:
File Dimensione Formato  
Gentili_et_al_2019.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 3.25 MB
Formato Adobe PDF
3.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/1927
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact