This paper describes a calibration procedure for a non-optimally configured High Frequency Radar (HFR) for the period 1 April 2021, to 31 March 2022, to assess sea waves characteristics. The HFR system, a 16.5 MHz WEllen RAdar (WERA), is part of an innovative network for monitoring the state of the sea. The system is installed in the western part of Sicily (Italy) where a wave buoy is positioned. HFR data underestimate the spectral significant wave heights (Hm0), in particular for Hm0 > 2 m, highlighting the need for calibration of the HFR system to ensure its optimal performance for operational purposes. The calibration was performed with both in-situ and modelled data provided by the Copernicus Marine Service. The best results were obtained when the buoy data were used as reference. Encouraging results were achieved as demonstrated by the improvement of the quantitative metrics after the calibration. Indeed, the RMSE decreased from 0.60 to 0.36 m; the correlation R increased slightly from 0.86 to 0.88, the slope from 0.48 to 0.8; whereas intercept from 0.11 to 0.31 m. Moreover, waves higher than > 2 m are well reproduced by the calibrated HFR time series with the RMSE decreasing from 1.3 to 0.53 m.

Calibration and validation of high frequency coastal radar waves exploiting in-situ observations and modelled data in the south-west Sicily

Ursella L.
;
Cardin V.;Deponte D.;
2023-01-01

Abstract

This paper describes a calibration procedure for a non-optimally configured High Frequency Radar (HFR) for the period 1 April 2021, to 31 March 2022, to assess sea waves characteristics. The HFR system, a 16.5 MHz WEllen RAdar (WERA), is part of an innovative network for monitoring the state of the sea. The system is installed in the western part of Sicily (Italy) where a wave buoy is positioned. HFR data underestimate the spectral significant wave heights (Hm0), in particular for Hm0 > 2 m, highlighting the need for calibration of the HFR system to ensure its optimal performance for operational purposes. The calibration was performed with both in-situ and modelled data provided by the Copernicus Marine Service. The best results were obtained when the buoy data were used as reference. Encouraging results were achieved as demonstrated by the improvement of the quantitative metrics after the calibration. Indeed, the RMSE decreased from 0.60 to 0.36 m; the correlation R increased slightly from 0.86 to 0.88, the slope from 0.48 to 0.8; whereas intercept from 0.11 to 0.31 m. Moreover, waves higher than > 2 m are well reproduced by the calibrated HFR time series with the RMSE decreasing from 1.3 to 0.53 m.
2023
High frequency radar (HFR), wave buoy, copernicus marine service (CMS), significant wave height, calibration, Sicily channel, Mediterranean sea
File in questo prodotto:
File Dimensione Formato  
Calibration and validation of high frequency coastal radar waves exploiting in situ observations and modelled data in the south west Sicily (2).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 4.44 MB
Formato Adobe PDF
4.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/19368
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact