In this work, global navigation satellite system (GNSS) observations from the northern tip of the Adria microplate are analysed to differentiate non-periodic (transient) tectonic signals from other deviations from the linear trends primarily due to hydrological loading effects. We tested a recently proposed hypothesis that a porosity wave generated by fault-valve mechanisms in a seismogenic fault in the Bovec basin (western Slovenia) propagated throughout the surrounding region. After excluding potential spatially correlated common-mode errors in the considered time series, we investigated the relationship between the GNSS observations and periodic hydrological loading variations. The tests demonstrated that subtracting the hydrological term was effective at the global scale and that the frequency band of the transient signal (1.5 < T < 3.5 years) was not correlated with hydrological effects at the local scale (within a few kilometres of the station). Next, the results of previous works are used to calculate the permeability values and pore-pressure state at the source of the transient signal. The permeability values for the four main rock formations in the region are consistent with independent observations for similar lithotypes. The ratio between the effective stress and lithostatic load for different vertical profiles in the Bovec area indicated a state of overpressure, with pore-pressure close to the value of the lithostatic load. Thus, our results help define a scenario in which the porosity wave could have originated. Indeed, the formation of the domains of interconnected fractures, such as during the formation of a porosity wave, increases the permeability values, thereby relieving overpressure and restoring a state of equilibrium.

Overpressure and Fluid Diffusion Causing Non-hydrological Transient GNSS Displacements

Rossi G;Fabris P;Zuliani D
2018

Abstract

In this work, global navigation satellite system (GNSS) observations from the northern tip of the Adria microplate are analysed to differentiate non-periodic (transient) tectonic signals from other deviations from the linear trends primarily due to hydrological loading effects. We tested a recently proposed hypothesis that a porosity wave generated by fault-valve mechanisms in a seismogenic fault in the Bovec basin (western Slovenia) propagated throughout the surrounding region. After excluding potential spatially correlated common-mode errors in the considered time series, we investigated the relationship between the GNSS observations and periodic hydrological loading variations. The tests demonstrated that subtracting the hydrological term was effective at the global scale and that the frequency band of the transient signal (1.5 < T < 3.5 years) was not correlated with hydrological effects at the local scale (within a few kilometres of the station). Next, the results of previous works are used to calculate the permeability values and pore-pressure state at the source of the transient signal. The permeability values for the four main rock formations in the region are consistent with independent observations for similar lithotypes. The ratio between the effective stress and lithostatic load for different vertical profiles in the Bovec area indicated a state of overpressure, with pore-pressure close to the value of the lithostatic load. Thus, our results help define a scenario in which the porosity wave could have originated. Indeed, the formation of the domains of interconnected fractures, such as during the formation of a porosity wave, increases the permeability values, thereby relieving overpressure and restoring a state of equilibrium.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.14083/221
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact