Carbon Dioxide (CO2) sequestration into geologic formations is a means of mitigating greenhouse effect. In this work we present a new numerical simulation technique to model and monitor CO2 sequestration in aquifers. For that purpose we integrate numerical simulators of CO2-brine flow and seismic wave propagation (time-lapse seismics). The simultaneous flow of brine and CO2 is modeled applying the Black-Oil formulation for two phase flow in porous media, which uses the Pressure-Volume-Temperature (PVT) behavior as a simplified thermodynamic model. Seismic wave propagation uses a simulator based on a space-frequency domain formulation of the viscoelastic wave equation. In this formulation, the complex and frequency dependent coefficients represent the attenuation and dispersion effect suffered by seismic waves travelling in fluid-saturated heterogeneous porous formations. The spatial discretization is achieved employing a nonconforming finite element space to represent the displacement vector. Numerical examples of CO2 injection and time-lapse seismics in the Utsira formation at the Sleipner field are analyzed. The Utsira formation is represented using a new petrophysical model that allows a realistic inclusion of shale seals and fractures. The results of the simulations show the capability of the proposed methodology to monitor the spatial distribution of CO2 after injection.

A numerical procedure to model and monitor CO2 sequestration in aquifers

Carcione J. M.;Gei D.
2013-01-01

Abstract

Carbon Dioxide (CO2) sequestration into geologic formations is a means of mitigating greenhouse effect. In this work we present a new numerical simulation technique to model and monitor CO2 sequestration in aquifers. For that purpose we integrate numerical simulators of CO2-brine flow and seismic wave propagation (time-lapse seismics). The simultaneous flow of brine and CO2 is modeled applying the Black-Oil formulation for two phase flow in porous media, which uses the Pressure-Volume-Temperature (PVT) behavior as a simplified thermodynamic model. Seismic wave propagation uses a simulator based on a space-frequency domain formulation of the viscoelastic wave equation. In this formulation, the complex and frequency dependent coefficients represent the attenuation and dispersion effect suffered by seismic waves travelling in fluid-saturated heterogeneous porous formations. The spatial discretization is achieved employing a nonconforming finite element space to represent the displacement vector. Numerical examples of CO2 injection and time-lapse seismics in the Utsira formation at the Sleipner field are analyzed. The Utsira formation is represented using a new petrophysical model that allows a realistic inclusion of shale seals and fractures. The results of the simulations show the capability of the proposed methodology to monitor the spatial distribution of CO2 after injection.
2013
Carbon dioxide, geological storage, seismic modeling, fluid flow in porous media
File in questo prodotto:
File Dimensione Formato  
2012NumericalProcedure.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 674.87 kB
Formato Adobe PDF
674.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/2245
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact