A strong topographic relief and the presence of weakly consolidated sediments create favorable conditions for the development of landslides around the eastern rim of the Fergana Basin (Central Asia). In summer 2012, a field experiment employing small aperture seismic arrays was carried out on an unstable slope, using ambient vibration recordings. The aim of the study was to constrain the seismic response of a potential future landslide and to map lateral and vertical changes in the shear-wave velocity of the surficial soil layers. Strong variations of horizontal-to-vertical spectral ratios in terms of amplitude and directionality indicated clear differences in local site effects, probably reflecting the stability of different sections of the slope. Results further showed resonant frequencies of both the entire unstable block, as well as for smaller, individual parts. The use of an ad hoc, passive seismic tomography approach based on noise correlograms allowed for the mapping of the shear-wave velocities of the sliding material, even in cases of significant topography relief. Based on the recording of seismic noise only, we clearly identified a low-velocity body of weakly consolidated claystone and limestone material, which can be interpreted as the landslide body, with laterally varying thickness.

Combining Seismic Noise Techniques for Landslide Characterization

Parolai S.;
2014-01-01

Abstract

A strong topographic relief and the presence of weakly consolidated sediments create favorable conditions for the development of landslides around the eastern rim of the Fergana Basin (Central Asia). In summer 2012, a field experiment employing small aperture seismic arrays was carried out on an unstable slope, using ambient vibration recordings. The aim of the study was to constrain the seismic response of a potential future landslide and to map lateral and vertical changes in the shear-wave velocity of the surficial soil layers. Strong variations of horizontal-to-vertical spectral ratios in terms of amplitude and directionality indicated clear differences in local site effects, probably reflecting the stability of different sections of the slope. Results further showed resonant frequencies of both the entire unstable block, as well as for smaller, individual parts. The use of an ad hoc, passive seismic tomography approach based on noise correlograms allowed for the mapping of the shear-wave velocities of the sliding material, even in cases of significant topography relief. Based on the recording of seismic noise only, we clearly identified a low-velocity body of weakly consolidated claystone and limestone material, which can be interpreted as the landslide body, with laterally varying thickness.
File in questo prodotto:
File Dimensione Formato  
Pilz_et_al_2014_PAG.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 7.83 MB
Formato Adobe PDF
7.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/2352
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 31
social impact