In this paper, a vision-based system for underwater object detection is presented. The system is able to detect automatically a pipeline placed on the sea bottom, and some objects, e.g. trestles and anodes, placed in its neighborhoods. A color compensation procedure has been introduced in order to reduce problems connected with the light attenuation in the water. Artificial neural networks are then applied in order to classify in real-time the pixels of the input image into different classes, corresponding e.g. to different objects present in the observed scene. Geometric reasoning is applied to reduce the detection of false objects and to improve the accuracy of true detected objects. The results on real underwater images representing a pipeline structure in different scenarios are shown. The presence of seaweed and sand, different illumination conditions and water depth, different pipeline diameter and small variations of the camera tilt angle are considered to evaluate the algorithm performances.
Vision based system for object detection in underwater images
Gentili S.Software
2000-01-01
Abstract
In this paper, a vision-based system for underwater object detection is presented. The system is able to detect automatically a pipeline placed on the sea bottom, and some objects, e.g. trestles and anodes, placed in its neighborhoods. A color compensation procedure has been introduced in order to reduce problems connected with the light attenuation in the water. Artificial neural networks are then applied in order to classify in real-time the pixels of the input image into different classes, corresponding e.g. to different objects present in the observed scene. Geometric reasoning is applied to reduce the detection of false objects and to improve the accuracy of true detected objects. The results on real underwater images representing a pipeline structure in different scenarios are shown. The presence of seaweed and sand, different illumination conditions and water depth, different pipeline diameter and small variations of the camera tilt angle are considered to evaluate the algorithm performances.File | Dimensione | Formato | |
---|---|---|---|
S021800140000012X.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
749.92 kB
Formato
Adobe PDF
|
749.92 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.