Seawater acidification could alter the susceptibility of marine organisms to emerging contaminants, such as pharmaceuticals. In this study, the combined effects of seawater acidification and the non-steroidal anti-inflammatory drug diclofenac on survival, growth and oxidative stress-related parameters (catalase activity and lipid peroxidation) in the larvae of the Manila clam Ruditapes philippinarum were investigated for the first time. An experimental flow-through system was set up to carry out a 96-h exposure of clam larvae. Two pH levels (pH 8.0, the control, and pH 7.8, the predicted pH by the end of this century) were tested with and without diclofenac (0.5 mg/L). After 4 days, mortality was dramatically higher under reduced pH, particularly in the presence of diclofenac (62% of the larvae dead). Shell morphology was negatively affected by both acidification and diclofenac from the first day of exposure. The percentage of abnormal larvae was always higher at pH 7.8 than in controls, peaking at 98% in the presence of diclofenac after 96 h. Instead, shell length, shell height or the ratio of these values were only negatively influenced by reduced pH throughout the whole experiment. After 96 h, catalase activity was significantly increased in all larvae kept at pH 7.8, whereas no significant difference in lipid peroxidation was found among the treatments. This study demonstrates a high susceptibility of R. philippinarum larvae to a slight reduction in seawater pH. Furthermore, the results obtained highlight that acidification enhances the sensitivity of clam larvae to environmentally relevant concentrations of diclofenac.

Coping with seawater acidification and the emerging contaminant diclofenac at the larval stage: a tale from the clam Ruditapes philippinarum

Ingrosso G.;Giani M.;
2016-01-01

Abstract

Seawater acidification could alter the susceptibility of marine organisms to emerging contaminants, such as pharmaceuticals. In this study, the combined effects of seawater acidification and the non-steroidal anti-inflammatory drug diclofenac on survival, growth and oxidative stress-related parameters (catalase activity and lipid peroxidation) in the larvae of the Manila clam Ruditapes philippinarum were investigated for the first time. An experimental flow-through system was set up to carry out a 96-h exposure of clam larvae. Two pH levels (pH 8.0, the control, and pH 7.8, the predicted pH by the end of this century) were tested with and without diclofenac (0.5 mg/L). After 4 days, mortality was dramatically higher under reduced pH, particularly in the presence of diclofenac (62% of the larvae dead). Shell morphology was negatively affected by both acidification and diclofenac from the first day of exposure. The percentage of abnormal larvae was always higher at pH 7.8 than in controls, peaking at 98% in the presence of diclofenac after 96 h. Instead, shell length, shell height or the ratio of these values were only negatively influenced by reduced pH throughout the whole experiment. After 96 h, catalase activity was significantly increased in all larvae kept at pH 7.8, whereas no significant difference in lipid peroxidation was found among the treatments. This study demonstrates a high susceptibility of R. philippinarum larvae to a slight reduction in seawater pH. Furthermore, the results obtained highlight that acidification enhances the sensitivity of clam larvae to environmentally relevant concentrations of diclofenac.
2016
Seawater acidification; Bivalve; Larvae; Survival; Growth; Oxidative stress
File in questo prodotto:
File Dimensione Formato  
MunariTapesChemosphere2016.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 657.85 kB
Formato Adobe PDF
657.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/2429
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 35
social impact