: Within the framework of the Interreg Italy-Slovenia programme, the project DuraSoft aimed at testing innovative technologies to improve the durability of traditional wooden structures in socio-ecologically sensitive environments. We focused on the impact of different wood treatments (i.e., copper-based coatings and thermal modification) on microbial biofilm formation in the Grado Lagoon. Wooden samples were placed in 2 areas with diverse hydrodynamic conditions and retrieved after 6, 20, and 40 days. Light, confocal and scanning electron microscopy were employed to assess the treatment effects on the microalgal community abundance and composition. Lower hydrodynamics accelerated the colonisation, leading to higher algal biofilm abundances, regardless of the treatment. The Cu-based agents induced modifications to the microalgal community, leading to lower densities, small-sized diatoms and frequent deformities (e.g., bent apices, frustule malformation) in the genera Cylindrotheca and Cocconeis. After 20 days, taxa forming 3D mucilaginous structures, such as Licmophora and Synedra, were present on chemically treated panels compared to natural ones. While in the short term, the treatments were effective as antifouling agents, in the long term, neither the copper-based coatings nor the thermal modification successfully slowed down the biofouling colonisation, likely due to the stimulating effect of nutrients and other substances released from these solutions. The need to develop more ecosystem friendly technologies to preserve wooden structures remains urgent.

Ecological Effect of Differently Treated Wooden Materials on Microalgal Biofilm Formation in the Grado Lagoon (Northern Adriatic Sea)

Natali V.;Malfatti F.;Cibic T.
2023-01-01

Abstract

: Within the framework of the Interreg Italy-Slovenia programme, the project DuraSoft aimed at testing innovative technologies to improve the durability of traditional wooden structures in socio-ecologically sensitive environments. We focused on the impact of different wood treatments (i.e., copper-based coatings and thermal modification) on microbial biofilm formation in the Grado Lagoon. Wooden samples were placed in 2 areas with diverse hydrodynamic conditions and retrieved after 6, 20, and 40 days. Light, confocal and scanning electron microscopy were employed to assess the treatment effects on the microalgal community abundance and composition. Lower hydrodynamics accelerated the colonisation, leading to higher algal biofilm abundances, regardless of the treatment. The Cu-based agents induced modifications to the microalgal community, leading to lower densities, small-sized diatoms and frequent deformities (e.g., bent apices, frustule malformation) in the genera Cylindrotheca and Cocconeis. After 20 days, taxa forming 3D mucilaginous structures, such as Licmophora and Synedra, were present on chemically treated panels compared to natural ones. While in the short term, the treatments were effective as antifouling agents, in the long term, neither the copper-based coatings nor the thermal modification successfully slowed down the biofouling colonisation, likely due to the stimulating effect of nutrients and other substances released from these solutions. The need to develop more ecosystem friendly technologies to preserve wooden structures remains urgent.
2023
biofilm
biofouling
impregnating agent
lagoon
microalgae
wood treatment
File in questo prodotto:
File Dimensione Formato  
Natali et al_2023.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 7.01 MB
Formato Adobe PDF
7.01 MB Adobe PDF Visualizza/Apri
Supplementary files.zip

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 922.68 kB
Formato Zip File
922.68 kB Zip File Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/24443
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact