We simulate variations in the P- and S-wave velocities due to CO2 injection in basalt, caused by water replacement and mineralization in the form of carbonate cements. Carbonization can be monitored with seismic data on the basis of changes in velocity. We consider basalts composed of (Fe, Ca and Mg) minerals mainly, and the pore space is assumed to be initially saturated with water. The mineralization is based on a model that estimates the volume of precipitated cement and resulting porosity loss, and the velocities as a function of injection time are calculated with a patchy cement model. In the example, there are two stages: 1 week of CO2 injection and 29 weeks of frame cementation. After 1 week, water has been replaced by CO2, where density and P-wave velocity decrease, and cementation implies an increase in bulk density, P-wave velocity, whereas porosity and surface area are reduced. To our knowledge there are no models relating the effects of carbon mineralization on seismic properties. The present model can be applied to other rocks, where CO2 injection induces mineralization and storage.

Rock acoustics of CO2storage in basalt

Carcione J. M.;
2023-01-01

Abstract

We simulate variations in the P- and S-wave velocities due to CO2 injection in basalt, caused by water replacement and mineralization in the form of carbonate cements. Carbonization can be monitored with seismic data on the basis of changes in velocity. We consider basalts composed of (Fe, Ca and Mg) minerals mainly, and the pore space is assumed to be initially saturated with water. The mineralization is based on a model that estimates the volume of precipitated cement and resulting porosity loss, and the velocities as a function of injection time are calculated with a patchy cement model. In the example, there are two stages: 1 week of CO2 injection and 29 weeks of frame cementation. After 1 week, water has been replaced by CO2, where density and P-wave velocity decrease, and cementation implies an increase in bulk density, P-wave velocity, whereas porosity and surface area are reduced. To our knowledge there are no models relating the effects of carbon mineralization on seismic properties. The present model can be applied to other rocks, where CO2 injection induces mineralization and storage.
2023
Composition and structure of the continental crust
Microstructure
Acoustic properties
Wave propagation
File in questo prodotto:
File Dimensione Formato  
Rock acoustics of CO2 storage in basalt.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/24883
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact