The loss of longitudinal connectivity affects river systems globally, being one of the leading causes of the freshwater biodiversity crisis. Barriers alter the dispersal of aquatic organisms and limit the exchange of species between local communities, disrupting metacommunity dynamics. However, the interplay between connectivity losses due to dams and other drivers of metacommunity structure, such as the configuration of the river network, needs to be explored. In this paper, we analyzed the response of fish communities to the network position and the fragmentation induced by dams while controlling for human pressures and environmental gradients. We studied three large European catchments covering a fragmentation gradient: Upper Danube (Austrian section), Ebro (Spain), and Odra/Oder (Poland). We quantified fragmentation through reach-scaled connectivity indices that account for the position of barriers along the dendritic network and the dispersal capacity of the organisms. We used generalized linear models to explain species richness and Local Contributions to Beta Diversity (LCBD) and multilinear regressions on the distance matrix to describe Beta Diversity and its Replacement and Richness Difference components. Results show that species richness was not affected by fragmentation. Network centrality metrics were relevant drivers of beta diversity for catchments with lower fragmentation (Ebro, Odra), and fragmentation indices were strong beta diversity predictors for the catchment with higher fragmentation (Danube). We conclude that in highly fragmented catchments, the effects of network centrality/isolation on biodiversity could be masked by the effects of dam fragmentation. In such catchments, metapopulation and metacommunity dynamics can be strongly altered by barriers, and the restoration of longitudinal connectivity (i. e. the natural centrality/isolation gradient) is urgent to prevent local extinctions.

The effects of longitudinal fragmentation on riverine beta diversity are modulated by fragmentation intensity

Baldan D.;
2023-01-01

Abstract

The loss of longitudinal connectivity affects river systems globally, being one of the leading causes of the freshwater biodiversity crisis. Barriers alter the dispersal of aquatic organisms and limit the exchange of species between local communities, disrupting metacommunity dynamics. However, the interplay between connectivity losses due to dams and other drivers of metacommunity structure, such as the configuration of the river network, needs to be explored. In this paper, we analyzed the response of fish communities to the network position and the fragmentation induced by dams while controlling for human pressures and environmental gradients. We studied three large European catchments covering a fragmentation gradient: Upper Danube (Austrian section), Ebro (Spain), and Odra/Oder (Poland). We quantified fragmentation through reach-scaled connectivity indices that account for the position of barriers along the dendritic network and the dispersal capacity of the organisms. We used generalized linear models to explain species richness and Local Contributions to Beta Diversity (LCBD) and multilinear regressions on the distance matrix to describe Beta Diversity and its Replacement and Richness Difference components. Results show that species richness was not affected by fragmentation. Network centrality metrics were relevant drivers of beta diversity for catchments with lower fragmentation (Ebro, Odra), and fragmentation indices were strong beta diversity predictors for the catchment with higher fragmentation (Danube). We conclude that in highly fragmented catchments, the effects of network centrality/isolation on biodiversity could be masked by the effects of dam fragmentation. In such catchments, metapopulation and metacommunity dynamics can be strongly altered by barriers, and the restoration of longitudinal connectivity (i. e. the natural centrality/isolation gradient) is urgent to prevent local extinctions.
2023
beta diversity
Connectivity index
Longitudinal river fragmentation
River network
riverconn
Connectivity index
Longitudinal river fragmentation
River network
beta diversity
riverconn
File in questo prodotto:
File Dimensione Formato  
The effects of longitudinal fragmentation on riverine beta diversity are modulated by fragmentation intensity.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 5.34 MB
Formato Adobe PDF
5.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/25125
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact