The lithological characterization of the seafloor is key information for offshore engineering, especially when it comes to pier and platform design. Undetected shallow gas pockets may cause the collapse of heavy platforms for hydrocarbon production. Unconsolidated sediments are not ideal for the basement of wind farms for electric power production. Drilling and coring can be used for local sampling, but continuous profiles or even areal coverage are far more preferable. High-resolution seismic profiles are successfully used when ports are not too busy, but otherwise, single-channel systems must be used. We show in this paper that even these simpler systems can be used to estimate parameters such as the acoustic impedance of shallow sediments directly beneath the seafloor. We exploit the amplitude decay of the multiple reflections between the seafloor and the surface, which does not depend on the source energy. If the offset between source and receiver is not too small, we can estimate the shallow P velocity and, via acoustic impedance, also the rock density.

Sea Floor Characterization by Multiples' Amplitudes in Monochannel Surveys

Vesnaver A.;Baradello L.
2023-01-01

Abstract

The lithological characterization of the seafloor is key information for offshore engineering, especially when it comes to pier and platform design. Undetected shallow gas pockets may cause the collapse of heavy platforms for hydrocarbon production. Unconsolidated sediments are not ideal for the basement of wind farms for electric power production. Drilling and coring can be used for local sampling, but continuous profiles or even areal coverage are far more preferable. High-resolution seismic profiles are successfully used when ports are not too busy, but otherwise, single-channel systems must be used. We show in this paper that even these simpler systems can be used to estimate parameters such as the acoustic impedance of shallow sediments directly beneath the seafloor. We exploit the amplitude decay of the multiple reflections between the seafloor and the surface, which does not depend on the source energy. If the offset between source and receiver is not too small, we can estimate the shallow P velocity and, via acoustic impedance, also the rock density.
2023
seafloor
characterization
monochannel
Chirp
Boomer
offshore engineering
File in questo prodotto:
File Dimensione Formato  
jmse-11-01662-v3.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 3.29 MB
Formato Adobe PDF
3.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/25263
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact