The Gamburtsev Subglacial Mountains (GSMs) in the interior East Antarctic Craton are entirely buried under the massive East Antarctic ice sheet, with a similar to 50-60 km thick crust and similar to 200 km thick lithosphere, but little is known of the crustal structure and uplift mechanism. Here, we use airborne gravity and aeromagnetic anomalies for characteristic analysis and inverse calculations. The gravity and magnetic images show three distinct geophysical domains. Based on the gravity anomalies, a dense lower crustal root is modelled to underlie the GSMs, which may have formed by underplating during the continental collision of Antarctica and India. The high frequency linear magnetic characteristics parallel to the suture zone suggest that the upper crustal architecture is dominated by thrusts, consisting of a large transpressional fault system with a trailing contractional imbricate fan. A 2D model along the seismic profile is created to investigate the crustal architecture of the GSMs with the aid of depth to magnetic source estimates. Combined with the calculated crustal geometry and physical properties and the geological background of East Antarctica, a new evolutionary model is proposed, suggesting that the GSMs are underlain by part of a Pan-African age advancing accretionary orogen superimposed on Precambrian basement.

Tectonic Implications for the Gamburtsev Subglacial Mountains, East Antarctica, from Airborne Gravity and Magnetic Data

Ferraccioli F.;
2023-01-01

Abstract

The Gamburtsev Subglacial Mountains (GSMs) in the interior East Antarctic Craton are entirely buried under the massive East Antarctic ice sheet, with a similar to 50-60 km thick crust and similar to 200 km thick lithosphere, but little is known of the crustal structure and uplift mechanism. Here, we use airborne gravity and aeromagnetic anomalies for characteristic analysis and inverse calculations. The gravity and magnetic images show three distinct geophysical domains. Based on the gravity anomalies, a dense lower crustal root is modelled to underlie the GSMs, which may have formed by underplating during the continental collision of Antarctica and India. The high frequency linear magnetic characteristics parallel to the suture zone suggest that the upper crustal architecture is dominated by thrusts, consisting of a large transpressional fault system with a trailing contractional imbricate fan. A 2D model along the seismic profile is created to investigate the crustal architecture of the GSMs with the aid of depth to magnetic source estimates. Combined with the calculated crustal geometry and physical properties and the geological background of East Antarctica, a new evolutionary model is proposed, suggesting that the GSMs are underlain by part of a Pan-African age advancing accretionary orogen superimposed on Precambrian basement.
2023
Gamburtsev Subglacial Mountains
gravity and magnetic
crustal architecture
accretionary orogen
File in questo prodotto:
File Dimensione Formato  
Tectonic+Implications+for+the+Gamburtsev+Subglacial+Mountains,+East+Antarctica,+from+Airborne+Gravity+and+Magnetic+Data 1.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/25923
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact