Seaweeds are considered a biomass for third-generation biofuel, and hydrothermal carbonization (HTC) is a valuable process for efficiently disposing of the excess of macroalgae biomass for conversion into multiple value-added products. However, the HTC process produces a liquid phase to be disposed of. The present study aims to investigate the effects of seed-priming treatment with three HTC-discarded liquid phases (namely AHL180, AHL240, and AHL300), obtained from different experimental procedures, on seed germination and plant growth and productivity of Phaseolus vulgaris L. To disentangle the osmotic effects from the use of AHL, isotonic solutions of polyethylene glycol (PEG) 6000 have also been tested. Seed germination was not affected by AHL seed-priming treatment. In contrast, PEG-treated samples showed significantly lower seed germination success. AHL-treated samples showed changes in plant biomass: higher shoot biomass was recorded especially in AHL180 samples. Conversely, AHL240 and AHL300 samples showed higher root biomass. The higher plant biomass values recorded in AHL-treated samples were the consequence of higher values of photosynthesis rate and water use efficiency, which, in turn, were related to higher stomatal density. Recorded data strongly support the hypothesis of the AHL solution reuse in agriculture in the framework of resource management and circular green economy.

Using the Aqueous Phase Produced from Hydrothermal Carbonization Process of Brown Seaweed to Improve the Growth of Phaseolus vulgaris

Spagnuolo D.;
2023-01-01

Abstract

Seaweeds are considered a biomass for third-generation biofuel, and hydrothermal carbonization (HTC) is a valuable process for efficiently disposing of the excess of macroalgae biomass for conversion into multiple value-added products. However, the HTC process produces a liquid phase to be disposed of. The present study aims to investigate the effects of seed-priming treatment with three HTC-discarded liquid phases (namely AHL180, AHL240, and AHL300), obtained from different experimental procedures, on seed germination and plant growth and productivity of Phaseolus vulgaris L. To disentangle the osmotic effects from the use of AHL, isotonic solutions of polyethylene glycol (PEG) 6000 have also been tested. Seed germination was not affected by AHL seed-priming treatment. In contrast, PEG-treated samples showed significantly lower seed germination success. AHL-treated samples showed changes in plant biomass: higher shoot biomass was recorded especially in AHL180 samples. Conversely, AHL240 and AHL300 samples showed higher root biomass. The higher plant biomass values recorded in AHL-treated samples were the consequence of higher values of photosynthesis rate and water use efficiency, which, in turn, were related to higher stomatal density. Recorded data strongly support the hypothesis of the AHL solution reuse in agriculture in the framework of resource management and circular green economy.
2023
circular economy
gas exchange
HTC
plant productivity
seaweed biomass
seed priming
File in questo prodotto:
File Dimensione Formato  
Using the Aqueous Phase Produced from Hydrothermal Carbonization Process of Brown Seaweed to Improve the Growth of Phaseolus vulgaris.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 3.72 MB
Formato Adobe PDF
3.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/26240
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact